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Background

• ERG supported EPA by preparing a summary and critical review of 
recent vehicle LCAs. ERG also outlined best practices for future 
vehicle LCAs based on the reviewed literature.

• Report available, peer-reviewed publication is currently under 
preparation
• Kyle.McGaughy@erg.com

• Appropriate comparisons require: Similar scope, assumptions, and 
methodology

• For GHG emissions from vehicles: What is the general consensus of 
scientific literature, and what are best practices for future automotive 
LCAs?
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Review Methodology
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Literature Search Methodology

• Searched for passenger vehicle LCAs published 2019-Mid 2024

• This search was focused on scientific articles, but did include 
government reports and vehicle manufacturer white papers

Search term examples
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Vehicle Technology LCA Element Emissions Type

Battery Electric Vehicle Cradle-to-grave Environment

Electric Vehicle Manufacture Greenhouse Gas

Plug-in Hybrid Electric 
Vehicle

Maintenance Particulate Matter

Fuel Cell Electric Vehicle Disposal Ozone



Literature Acceptance Criteria

• 98 studies were fully reviewed and 
documented
• Study scope (geography, year, vehicle type)

• Key assumptions about life cycle stages

• Availability of LCI

• Peer-review

• 80 studies were accepted and used for 
developing best practice recommendations
• Attributional LCA

• Peer reviewed

• Generally followed ISO-14040/14044 guidelines

• 35 Studies used for intra-study comparisons
• Full life cycle scope

• Multiple vehicle types 8



Intra-study Comparisons
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Intra-study Comparisons (GHG Impacts)

• Results were compiled based on global 
climate change potential (GCCP) impacts
• gCO2eq/km

• Intra-study comparisons only

• Alternative power trains generally had 
lower GCCP than ICEV

• Most studies included BEVs and ICEVs

• Fuel Cell, Hybrid, and Plug-in Hybrid 
vehicles were included less than often
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Number of Studies with 
Comparisons to ICEVs

Lower GCCP than ICEV Higher GCCP than ICEV
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Lower GCCP than ICEV Higher GCCP than ICEV
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Differences primarily driven by electricity grid examined. Some difference due to battery materials.
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Small sample size, but 
differences primarily 
driven by hydrogen 
production pathway.



Life Cycle Stage Highlights
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Life Cycle Stages

• Most studies were full life cycle

• Most common single-stage focus was on-road use

• Vehicle manufacturing and end-of-life were both excluded or not 
detailed in some studies (minority of studies overall) 16

Extraction & 
Refining

Part, Component, 
Module Mfct.

Vehicle Mfct. On-road use End-of-life

Extraction & Refining 61

Part, Component, 
Module Mfct.

57 62

Vehicle Mfct. 53 56 57

On-road use 56 55 54 66

End-of-life 46 49 47 48 50

Number of Reviewed Studies that Included Each Life Cycle Stage

Most

Common

Least

Common
Color Scale



Life Cycle Stage Highlights

• The most accurate life cycle assessments require very specific 
information about a vehicle’s supply chain

• This data is not always available or may not even be known and 
instead secondary data must be used

• These highlights are intended to show how secondary data sources 
must still be selected with care to best match the scope of the life 
cycle assessment

• Scope: year, location, vehicle type
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Highlights: Resource Extraction and Refining

• Lithium production impacts vary 
depending on country and process
• Impurities can increase energy 

consumption

• Range of 2.7-31.6 kgCO2eq/kg Li2CO3

• Water scarcity impacts were also 
examined

• Schenker et al. 2022, Kelly et al. 2021

• Similar trends for other key 
resources for vehicles

18

Map of lithium resource availability (Grosjean et al. 2012)



Highlights: Manufacturing and Assembly

• Manufacturing and assembly methods should use the most recent 
data to best reflect current supply chains
• Chordia et al. 2021 found GCCP impacts of battery production to be 30% 

higher in ecoinvent v3.7.1 than v2.2 to better factory data and more resolved 
resource supply chains

• Chordia also modeled larger, more efficient factories finding that battery 
manufacturing impacts could be lowered by ~ 40%

• Infrastructure is a driver of impacts differences in this stage
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Highlights: Use Stage

• Vehicle use stage, most important factor for GHG emissions is fuel 
consumption
• Due to tailpipe emissions from combustion and electricity generation for EVs

• Fuel consumption affected by driver, road conditions, weather
• Zhou et al. 2016
• EPA MOVES model

• Example: Experiments have found auxiliary loads (air conditioning) can 
increase fuel consumption by 18% 
• (Carlson, Wishart, and Stutenberg 2016)

• For Plug-In Hybrid vehicles, utilization factor is a major driver of differences 
between studies, this assumption should be explicitly documented and 
discussed
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Highlights: Fuel Production

• For EVs, electricity production is 
usually the main driver of impacts 
and impact differences

• Critical to use both the most recent 
data, and the most recent 
projections

• For FCEVs, fugitive hydrogen 
emissions were generally excluded, 
but should be included
• Hydrogen has a GWP of about 12, 

loss rates can be as high as 20%
21
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Automotive LCA Methodology 
Recommendations
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Best Practices for Automotive LCAs

• Qualitative recommendations are made based on the trends found in the 
reviewed papers
• e.g. electricity grid mix was found to be a main driver of impacts, so using the recent 

data is critical

• No specific quantitative data quality metric is recommended

• The following slides are a condensed version of the full best practices

• Recommendations are framed similarly to EPA guidance on data quality
• Guidance on Data Quality Assessment for Life Cycle Inventory Data (Edelen and 

Ingwersen 2016)

• Data Quality Assessment Method to Support the Label Program for Low Embodied 
Carbon Construction Materials (EPA 2024b)
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Best Practices for Automotive LCAs

• LCI files available (e.g. openLCA database, csv file)
• Transparently sharing LCI helps study reproducibility
• Sharing files allows for others to use developed unit processes

• Primary and secondary data <3 years old
• Fuels LCI explicitly cited and detailed
• All data appropriate for study scope

• Examine future values of major drivers of impacts
• Projections should be as recent as possible

• All relevant impacts assessed, not just GHG
• Impacts should be geospatially resolved if possible
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Best Practices for Automotive LCAs

Resource Extraction and 
Refining

• Major processes and supply 
chains detailed
• Where and how?

• Resource depletion and 
scarcity impacts reported and 
cited
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Manufacturing and Assembly

• Vehicle bill of materials or LCI 
available in SI

• Transport of materials 
considered between stages

• Geospatial factors considered



Best Practices for Automotive LCAs

Use Stage

• Fuel consumption reported

• Non-vehicle factors considered 
in fuel consumption

• Non-tailpipe emissions 
included in LCI
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End-of-Life

• Geospatial/geographic factors 
considered in end-of-life 
processes

• ISO 14044 recommended 
allocations procedures



Best Practices for Automotive LCAs

Fuel Production

• Fuel production data in <3 years old, explicitly reported in methods

• Fuel cycle properties reported (e.g. T&D loss, charging losses, fugitive 
H2)
• Fugitive hydrogen has a GWP of ~12, its impact can be significant

• Future projections of fuel cycle data used in baseline or sensitivity 
scenarios
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Summary

• Electric vehicles generally have a lower GCCP than ICEVs
• Impact differences between studies driven by assumptions concerning fuel 

production and battery manufacturing

• Quality life cycle assessments consider that most recent life cycle 
inventory availability
• Sensitivity cases that project future fuel production

• For informed decision making, studies should include all relevant 
impacts and all life cycle elements
• Does not necessarily mean that all impacts have to be equally weighted in 

decision making
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Contact Information

Kyle McGaughy
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 Kyle.McGaughy@erg.com
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Joseph McDonald
 McDonald.Joseph@epa.gov 
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