DDAW System test methodology for validation by the manufacturer

Clare Anderson, PhD.

Professor of Sleep and Circadian Science Centre for Human Brain Health, School of Psychological Sciences University of Birmingham, UK

Adjunct Professor (Research)
Monash University Accident Research Centre (MUARC), Australia

DDAW System test methodology for validation by the manufacturer

PURPOSE: Develop a standardised test procedure that will provide evidence that a DDAW system shall provide a warning to the driver at an excessive or unsafe level of drowsiness

- How should positive and negative (drowsiness) states be induced during the validation test procedure?
- Should validation testing with human participants continue after the first True Positive warning is given, and if so, what requirements would determine the extended testing procedure?
- How does the test bin change the outcome? How long should it be, and should the bins before/after the warning be considered, and why?
- Should there be requirement for a minimum number of test runs per participant to ensure statistical significance, as opposed to being able to use a given participant once, but another participant multiple times?

Topics for Discussion

- Induction of Positive/Negative Drowsy States for Valid Tests
- 2. Participant Selection and Testing Schedules
- 3. End of Test Decisions
- 4. Analysis of Data Recommended Bin sizes

Several factors can affect test outcomes

Test Parameters

Establishing drowsy and nondrowsy states are essential for valid trials

Determine

Metrics

Trial design can affect trial outcomes

- Duration of test
- Participant selection
- Type of trial (e.g., track)

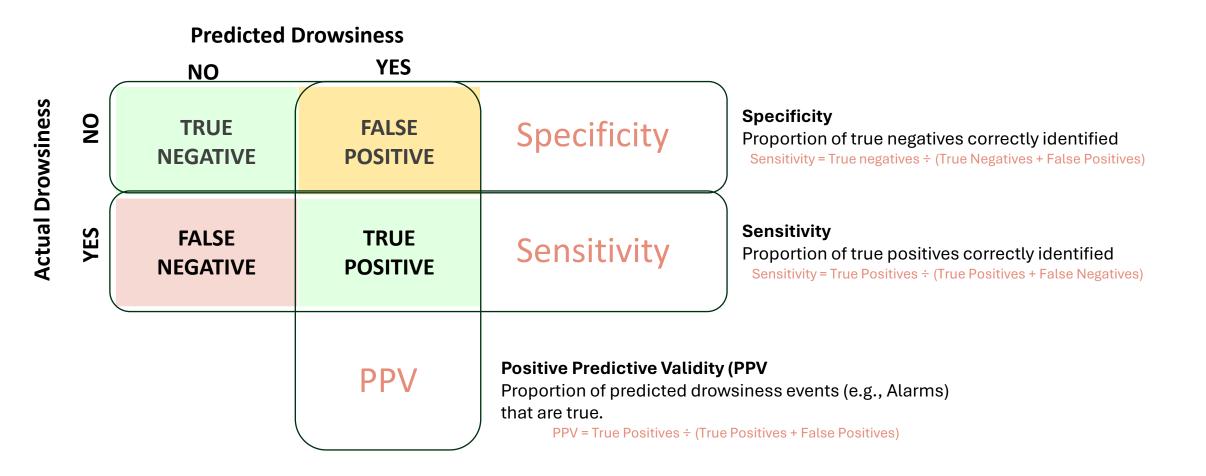
Conduct **Validation Test**

Assess Outcome

Create Drowsy/Non-**Drowsy States**

- Maps to driving outcomes and crash risk (e.g., Anderson et al., 2023)
- Strongly associated with drowsiness (long eye closures and microsleep (e.g., Manousakis et al. 2021)
- Other evidence-based measures comparable to KSS8 for detecting drowsiness

KSS8 as a drowsiness 'ground truth'


Data binning (window of assessment)

Data handling can affect trial outcome

- Determine true positive
- **Ending trial**

What is needed for a valid 'test'?



Inducing Drowsiness

Individual Factors

Other

Driving performance can be impaired by other factors (e.g., upon awakening, medication)

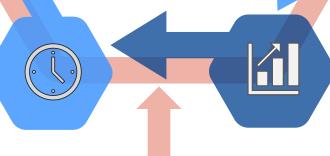
Prior Insufficient

increases with insufficient sleep (<5h) (e.g. Sprajcer et al. 2023)

Sleep Disorders

Sleep disorders (esp OSA) lead to a higher risk of fallasleep MVCs up to 8x risk.

Causes of (driver) drowsiness



Increased Time Awake

Risk increases with each hour of wakefulness after nine hours on shift (e.g., Shekari Soleimanloo et al., 2022)

Time of Day

Peak risk occurs during the night-time hours and afternoon (e.g., Shekari Soleimanloo et al., 2022)

Drive Factors

Sleep

Risk increases exponentially with each day that sleep duration is insufficient (e.g., Shekari Soleimanloo et al., 2022)

Chronic Insufficient

Inducing Drowsiness (Negative/Positive States)

Optalert®

LIBERTY MUTUAL (2011-12)

Shift workers of varying ages

Day/Night shifts

KSS, SSS

Near-crash Events/Lane Deviations

Lee et al. 2016; Anderson et al. 2023

ARC-TRACK (2017-19)

Younger and older drivers

Oh versus 8h sleep

KSS, SSS, Devices

Rear-crash Events/Lane Deviations

Seeing

Machines ™

Cai et al. 2020, 2023; Manousakis et al. 2025

Project DRIVES (Dose-Response In-Vehicle Evaluation of Sleepiness) (2019-22) **AmTech**

Younger drivers

Oh, 3h, 5h and 8h sleep

KSS, SSS, Devices

Near-crash Events/Lane Deviations

PST©

D-TECH (Drowsiness Technology) (2021-24)

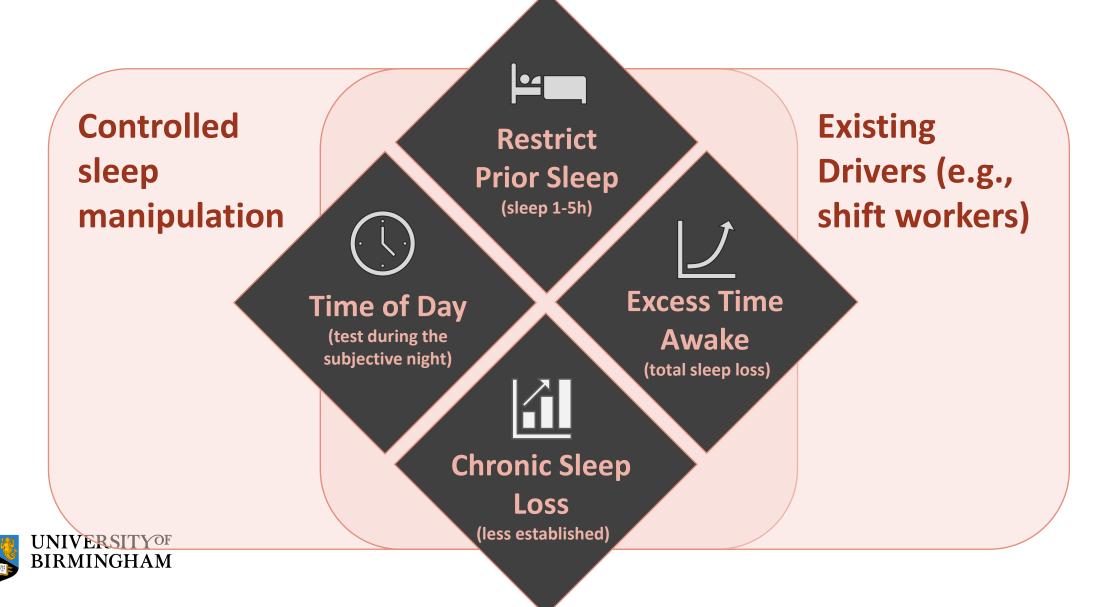
PVT

Middle-aged drivers

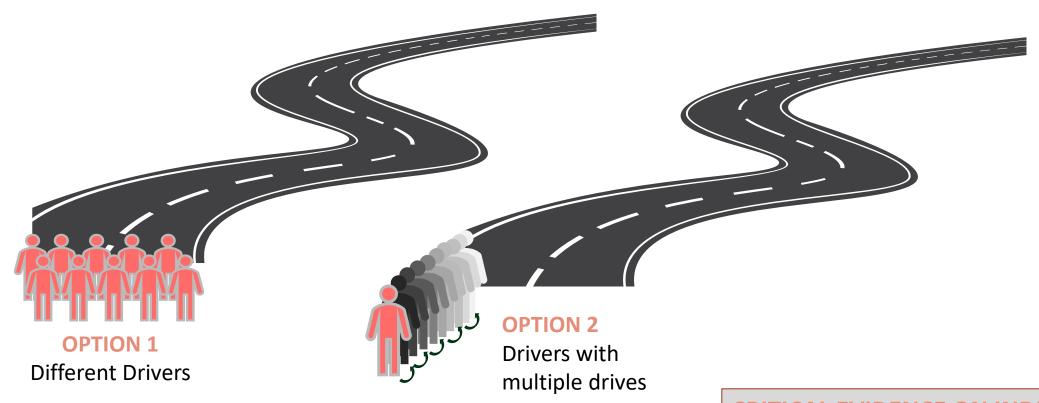
Oh and 8h sleep

KSS, SSS, Devices

Near-crash Events/Lane **Deviations/Seeing Machines**


Manousakis et al. 2025, www.aaa.com.au

Inducing Drowsiness (Negative and Positive States) through sleep loss


Study Name	n	Age	Drive Duration (mins)	Drowsiness Induction Method	% Negative State (KSS<8)	% Positive State (KSS>8)
D-TECH	22	30-50y	120minutes	0h sleep + afternoon drive	33% pts max 56% data points	67% pts max 44% data points
ARC TRACK Y	17	21-35y	120minutes	0h sleep + afternoon drive	24% pts max 53% data points	76% pts max 47% data points
ARC TRACK O	17	50-65y	120minutes	0h sleep + afternoon drive	35% pts max 63% data points	65% pts max 37% data points
DRIVES 0h	15	21-35y	120minutes	0h sleep + afternoon drive	27% pts max 62% data points	73% pts max 38% data points
DRIVES 3h	15	21-35y	120minutes	0h sleep + afternoon drive	20% pts max 56% data points	80% pts max 44% data points
DRIVES 5h	15	21-35y	120minutes	0h sleep + afternoon drive	13% pts max 49% data points	87% pts max 51% data points

Inducing drowsiness through insufficient sleep

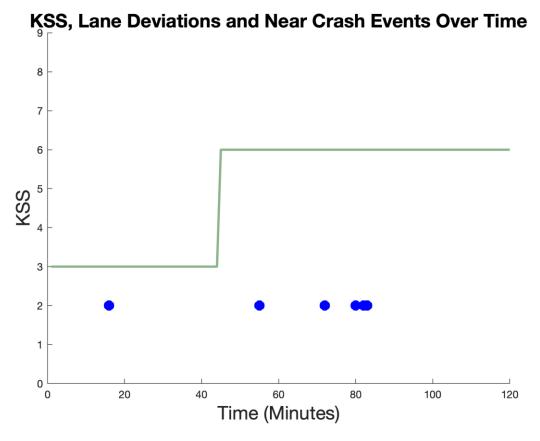
Participant Selection and Test Procedures

CRITICAL EVIDENCE ON INDIVIDUAL

DIFFERENCES (Van Dongen et al., 2004)

- 1. Large differences exist between people
- 2. People are highly consistent in their repeated response to sleep loss

Participant Selection and Test Procedures

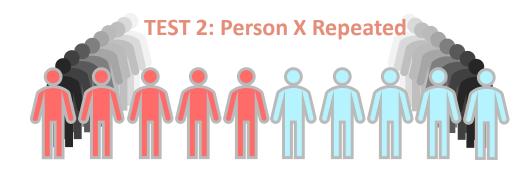

Resilient

Vulnerable

- Lane Departure
- Near Crash Event

Multiple exposure skews results

Test Scenario:


Two-hour drive following a night without sleep

Classification of Drowsiness: KSS8

Device: Multiple

TEST 1: Different People*

KEY OUTCOMES

Repeated exposure of drivers can occur, but average sensitivity must be used.

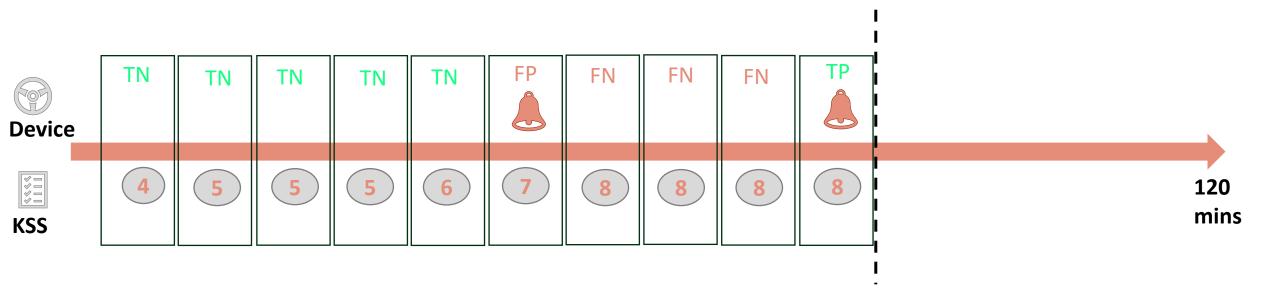
Not averaging the data will skew of results with large error (e.g., depend on WHO is repeated and/or VALIDITY of the device)

Testing sample

- 4.1. Each test participant shall generate at least 1 true positive or 1 false negative event as referred to in paragraphs 6.1.4. to 6.1.7. of this Appendix. The total number, obtained by the sum of true positive events and false negative events, shall be equal to, or higher than 10. The minimum sample size shall be 10 participants. More than one test may be run for each participant in order to acquire more data for a given participant, but the averaged data point must be used in accordance with 4.1.1
- 4.1.1. The sensitivity per participant shall be calculated first for each participant, then the average sensitivity and its standard deviation shall be calculated from the values of sensitivity per participant.
- 6.1.4.1. Once a true positive event has occurred, all the data points after this event shall be considered irrelevant for this specific test. If the participant restarted the test after a rest, it shall be considered a different dataset (with the same participant).

Ending the trial is an important consideration

Sensitivity


Proportion of true positives correctly identified

Sensitivity = True Positives ÷ (True Positives + False Negatives)

Whole trial \longrightarrow 4/(4+4) = 0.50 (50%)

Ending the trial is an important consideration

Sensitivity

Proportion of true positives correctly identified

Sensitivity = True Positives ÷ (True Positives + False Negatives)

Whole trial
$$\longrightarrow$$
 4/(4+3) = 0.57 (57%)

Ending the test: Ground Truth (KSS) vs Device

	Device	Trial End	Sensitivity	Specificity	PPV
Device (Lane		End of Drive	34%	93%	80%
Device (Ocula		End of Drive	44%	98%	93%
Device (Ocula		End of Drive	39%	86%	63%
Device (Native		End of Drive	7%	99%	80%

The D-TECH Program: 2020-2024

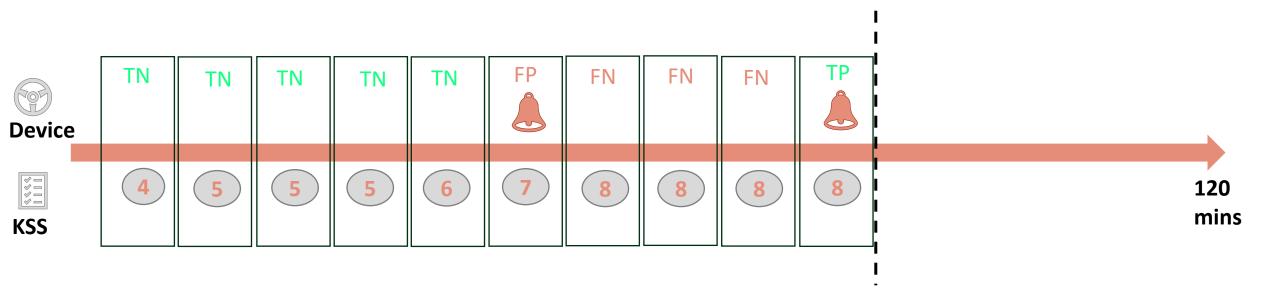
Ending the test: Ground Truth (Near Crash)

	Device	Trial End	Sensitivity	Specificity	PPV
Devic	vice 1	End of Drive	60%	86%	40%
(ane) FIR	FIRST True Pos	50%	90%	14%
Device	vice 2	End of Drive	75%	89%	52%
(0	cular)	FIRST True Pos	50%	92%	18%
Device	vice 3	End of Drive	68%	83%	37%
(0	cular)	FIRST True Pos	25%	83%	5%
Devi	ice 4	End of Drive	15%	98%	60%
(N	ative)	FIRST True Pos	7%	98%	33%

The D-TECH Program: 2020-2024

Ending the test after the first TP or later

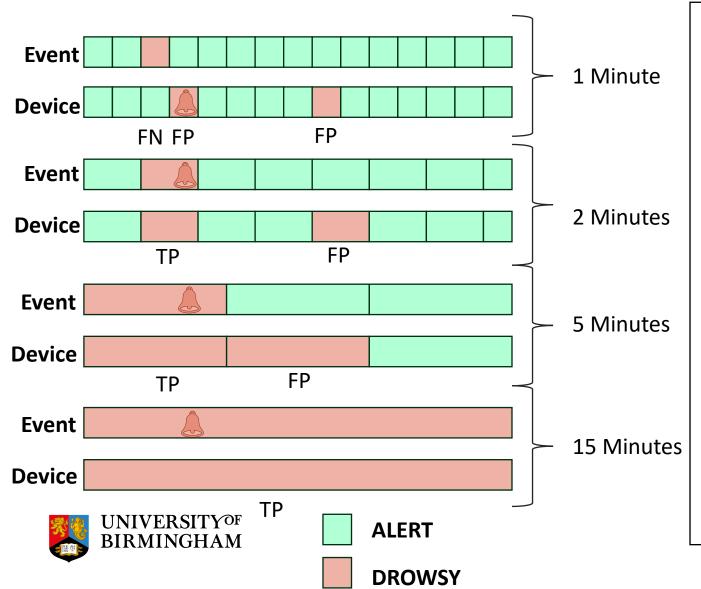
Advantages


Disadvantages

- Reduces sensitivity thus maintains high standards for safety
- Ensures standardisation for all test situations
- Reduces trial length and burden for manufacturers

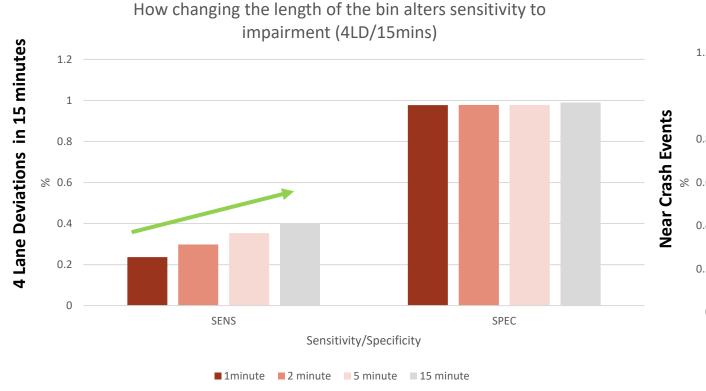
- Reduces sensitivity so harder for manufacturers to meet standards
- Need to monitor ground truth (KSS) and devices (alarms) in real-time
- When to end the test in the event of no TP

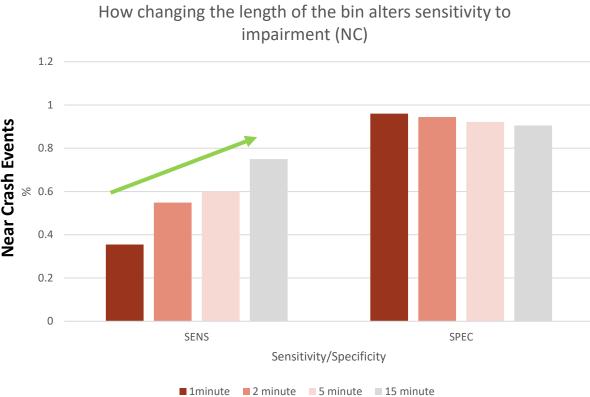
Ending the trial is an important consideration


QU: How easily can we satisfy the requirements?

Testing sample

- 4.1. The total number, obtained by the sum of true positive events and false negative events, shall be equal to, or higher than 10.
- 6.1.4.1. Once a true positive event has occurred, all the data points after this event shall be considered irrelevant for this specific test.


QU: Why end after the first TP?


Larger bin size increases the likelihood of a true positive

1		TN	FP	FN
	0/15	13/15	2/15	1/15
2	1/7.5	5.5/7.5	1/7.5	0/7.5
5	1/3	1/3	1/3	0/3
15	1/1	0/1	0/1	0/1
Dercentage (%) - 08 - 08 - 08 - 09 - 09 - 09 - 09 - 09		Th		1 2 5 15
	TP	TN Statistics	FP	FN

Bin size for calculations matters: a case study analysis

The D-TECH Program: 2020-2024

Bin size for calculations matters

Larger time windows (bins) increase the chance that the device activates in the same window (bin) as the true drowsiness event.

Sensitivity therefore increases with larger windows (bins)

A 15minute window (bin) can have a gap of 14 minutes between alarm and event

- 6.1.2. Measurements shall be obtained during the testing at regular intervals of **between approximately 5 minutes and 15 minutes**, where each measurement obtained shall be assumed to cover the previous interval.
- 6.1.4 Any warning from the DDAW system shall be treated as a true positive event if the participant's previous or next rating is at a KSS of level 7 or above. Paragraphs 6.1.6. and 6.1.7. provide further clarification on generation of true positive events.

Bin size for calculations matters

- Larger time windows (bins) increase the chance that the device activates in the same window (bin) as the true drowsiness event.
- Sensitivity therefore increases with larger windows (bins)
- A 15minute window (bin) can have a gap of 14 minutes between alarm and event: is this (and longer) acceptable?
- A smaller temporal resolution of the time window allows for a system to 'warn' the driver in a timely manner (Watling et al., 2021)
- Standardization (or capping) of the bin size is recommended, and an evaluation of existing data to systematically determine the influence of these 'decisions'

Several factors can affect test outcomes

Test Parameters

 Establishing drowsy and nondrowsy states are essential for valid trials

Trial design can affect trial outcomes

- Duration of test
- Participant selection
- Type of trial (e.g., track)

Create
Drowsy/NonDrowsy States

Determine Metrics

Conduct Validation Test

Assess Outcome

KSS8 as a drowsiness 'ground truth'

- Maps to driving outcomes and crash risk (e.g., Anderson et al., 2023)
- Strongly associated with drowsiness (long eye closures and microsleep (e.g., Manousakis et al. 2021)
- Other evidence-based measures comparable to KSS8 for detecting drowsiness

Data handling can affect trial outcome

- Data binning (window of assessment)
- Determine true positive
- Ending trial

Additional Evidence is Needed

Summary

- Induction of drowsy states can be done in many ways and largely relate to prior sleep.
- 2. Testing a variety of drivers is recommended, and repeating drivers should only occur if averages are used.
- Ending after the first TP can influence values but generally reduces sensitivity (doesn't compromise safety).
- Additional systematic checks are required on the operational outcomes of the analyses.
- 5. Time window for assessment (e.g., bin size) of classification (e.g., TP, FN, etc) is important and requires more discussion/evidence.

DDAW System test methodology for validation by the manufacturer

PURPOSE: Develop a standardised test procedure that will provide evidence that a DDAW system shall provide a warning to the driver at an excessive or unsafe level of drowsiness

How should positive and negative (fatigue) states be induced during the test procedure for validation?

Evidence suggests many states can be used to ensure **both** states are observed

Should there be requirement for a minimum number of test runs per participant to ensure statistical significance, as opposed to being able to use a given participant once, but another participant multiple times?

Repeated participants can introduce error (through averaging), but essential this occurs.

Should validation testing with human participants continue after the first True Positive warning is given, and if so, what requirements would determine the extended testing procedure?

Advantages exist for ending the test after the first TP, but sensitivity will be reduced

How does the test bin change the outcome? How long should it be, and should the bins before/after the warning be considered, and why?

Wider bin sizes increase the likelihood of a TP. Consider restricting/capping the bin size to manage safety implications

Acknowledgements

COLLABORATORS AND RESEARCH SUPPORT

Project Leaders/Post Doctoral Fellows

Sophie Mason, Ph.D.*
Jessica Manousakis, Ph.D.*
Suzanne Ftouni, Ph.D.
Katy Jeppe, Ph.D.
Anna Cai, Ph.D.
Charmaine Diep, Ph.D.
Madelaine Sprajcer, Ph.D.
Michael Lee, Ph.D.
Jennifer Cori, Ph.D.

Collaborators

Mark Howard, M.D., Ph.D.
Jim Horne, Ph.D.
Sally Fergusson, Ph.D.
Anjam Naweed, Ph.D.
Charles Czeisler, Ph.D.
Bill Horrey, Ph.D.
Mike Lenne, Ph.D.
Shantha Rajaratnam, Ph.D.

All students and research support staff in the Division of Sleep Medicine (Brigham and Women's Hospital), the Monash Sleep and Circadian Laboratory, and the METEC Driver Training Facility.

All the participants who make the work possible.

* Running data processing/analyses for workshop

FUNDING SUPPORT

Department of Transport and Planning

business.gov.au 13 28 46

References

Anderson, C. et al. Feeling sleepy? stop driving-awareness of fall asleep crashes. Sleep 46 (2023).

Cai, A.T. et al. (2021). On-road driving impairment following sleep deprivation differs according to age. Scientific Reports. 11: 21561.

Lee, M. L. et al. High risk of near-crash driving events following night-shift work. Proc Natl Acad Sci U S A 113, 176-181, (2016).

Manousakis, J. E. et al. From Drift to Danger: Predicting Near Crashes from Lane Deviations in Drowsy Drivers. Under Review (Preprint SSRN) (2025).

Manousakis, J. E. et al. Evaluation, Validation and Comparison of Fatigued Driving Monitoring Systems Final Report.

(https://www.aaa.asn.au/library/evaluation-validation-and-comparison-of-fatigued-driving-monitoring-technologies/, 2024).

Manousakis, J. E., Mann, N., Jeppe, K. J. & Anderson, C. Awareness of sleepiness: Temporal dynamics of subjective and objective sleepiness.

Psychophysiology 58, e13839, (2021).

Sprajcer et al. (2023). How Tired is Too Tired to Drive? A Systematic Review Assessing the Use of Prior Sleep Duration to Detect Driving Impairment. Nat Sci Sleep. 15:175-206.

Shekari Soleimanloo et al. (2022). The association of schedule characteristics of heavy vehicle drivers with continuous eye-blink parameters of drowsiness. Transportation Research Part F: Traffic Psychology and Behaviour. 90: 485-499.

Watling, Hasan & Larue (2021). Sensitivity and specificity of the driver sleepiness detection methods using physiological signals: A systematic review. Accident Analysis & Prevention, Volume 150, 105900.

DDAW System test methodology for validation by the manufacturer

Clare Anderson, PhD.

Professor of Sleep and Circadian Science Centre for Human Brain Health, School of Psychological Sciences University of Birmingham, UK

Adjunct Professor (Research)
Monash University Accident Research Centre (MUARC), Australia

