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1 Introduction 
The distribution of AI systems across various domains has transformed industries on the one hand by 
enabling more complex functionalities in areas such as perception, decision-making and automation, and on 
the other hand by increasing system performance and efficiency. In sectors like healthcare, AI systems are 
utilized for diagnostics and personalized treatment plans, while in finance, they optimize trading strategies 
and fraud detection. In the automotive industry, the distribution of AI systems plays a major role in 
revolutionizing vehicle design, improving maintenance, usability and cybersecurity. Advanced Driver 
Assistance Systems (ADAS) are using AI algorithms to interpret data from various sensors, such as cameras, 
LiDAR, and RADAR, enabling features like lane-keeping assistance, adaptive cruise control, and automatic 
emergency braking. Furthermore, advancements in this field will progressively bring the industry nearer to 
the objective of fully Autonomous Driving (AD). 

Assessing AI, thereby making use of transparent and practically applicable guidelines and standards, is 
essential for creating a safe, secure, and trustworthy system, particularly in safety-critical fields like 
automotive, where system failures can lead to serious harm or life-threatening scenarios. Evaluating AI 
systems, especially in complex applications, requires a comprehensive approach throughout the entire 
lifecycle, from model development and deployment to ongoing monitoring and enhancement. 

The use of AI is typically accompanied by various challenges related to the topics of safety, security, 
robustness, and transparency. Qualitatively, models often function as "black boxes," making it difficult to 
understand, trace and explain decisions and their underlying processes. Addressing this opacity requires 
designing for interpretability and ensuring that the model functionality is safe and secure [1]. Nevertheless, it 
is difficult to determine the decision boundaries of a model in order to decide whether the system fulfills its 
intended purpose or demonstrates incorrect behavior under certain conditions and input. 

Additionally, the effectiveness of AI systems is often determined by data quality, model design, and the 
system's ability to generalize across diverse conditions. As AI systems, especially in AD/ADAS, process massive 
amounts of data to make predictions and decisions, the computational burden and the need for high 
processing speeds add further complexity. Ensuring consistent performance across varying conditions and 
data quality remains a significant challenge, particularly in dynamic environments such as traffic situations. 
Since formal verification is – in most cases - not a viable option for AI, the creation of evidence often relies 
on empirical testing [2]. Required parameters for a comprehensive testing, including the characteristics of the 
test data (extent, scope, etc.) and test criteria still have to be determined on a case-by-case basis as there are 
currently no established empirical values to reference in this context. 

During development and operation, AI systems are exposed to specific risks, including vulnerability to 
adversarial attacks as well as model and dataset manipulations that can compromise model integrity and 
performance. For example, evasion attacks might cause an AI model for traffic sign recognition to misclassify 
objects when confronted with slight, malicious alterations, such as patches or adversarial patterns. Data 
poisoning of the training data can create backdoors in the model or negatively influence the overall 
performance. Privacy attacks targeting training data and model may help to extract the manufacturer’s 
intellectual property and can be a starting point for further adversarial attacks on the system [3, 4]. 

Addressing these vulnerabilities requires the consideration of both existing, domain-specific safety and 
security requirements as well as requirements specifically tailored to the characteristics of AI. Comprehensive 
robustness testing across various scenarios to identify failure points is a necessary foundation for verification 
of the claimed requirements [5]. Achieving safe and secure autonomous driving with AI is only possible by 
addressing the introduced aspects and developing appropriate evaluation approaches that account for AI-
specific factors. 

In general, an AI system is accompanied by additional components and (sub-)systems that form an entire 
system complex embedded in a sensori-motor loop with the environment (see Figure 1). This reflects in 
potential interaction effects with traditional software and hardware components, i.a., sensors, actuators, and 
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other AI systems, but also in high-level system requirements, e.g., from standardization and regulation, which 
apply to the entire system and thus equally for both traditional and AI systems. 

The existing requirements need to be interpreted for AI systems and implemented in such a way that they 
can be applied in practice. In particular, the aforementioned AI characteristics must be taken into account. 
This document is intended to facilitate the step from existing high-level requirements for a system with 
integrated AI components to the concrete technical testing of these requirements. This process is supported 
by AI-specific requirements that cover the specifics of AI. 

Figure 1: Schematic of an integrated AI-system in automotive. Decision-/Control-Systems are embedded 
in a sensori-motor-loop with the environment. Classical IT components using conventional software and 

AI components interact in different configurations depending on the task at hand (here depicted in 
purple for a fictive task). AI may additionally be used to detect and mitigate attacks via and problems 

with sensor data (here shown in green). Furthermore, AI may also be used by attackers (not shown). 



2 Scope 

Bundesamt für Sicherheit in der Informationstechnik 6 

2 Scope 
The Technical Guideline BSI TR-[TBD] introduces a comprehensive set of generic AI-specific requirements 
for the mobility sector with a focus on vehicles. Due to the complexity of the vehicle ecosystem and the 
numerous related AI use cases ADAS and AD functions in vehicles were used as a starting point for developing 
and for practically evaluating these requirements in depth. This guideline is designed in a generic and 
modular way to facilitate the application to other use cases and to facilitate the inclusion of insights from 
further use cases in future revisions. It outlines a structured approach for deriving and defining AI-specific 
requirements, along with detailed guidance for specifications and an iterative audit process to evaluate 
compliance and ensure that such systems are operating safely and securely. The audit requirements focus on 
both the AI system itself as well as its interaction with external systems, such as vehicle control units, sensors, 
or external communication interfaces.  

Since AI systems aim to replicate or surpass complex human behavior in complex environments it is difficult 
to explain and often impossible to formally verify these systems. Thus, extensive empirical testing is 
necessary. The derivation of appropriate thresholds and metrics for their safety and security assurance is a 
challenge. Consequently, this technical guideline recommends an iterative approach to address this gap for 
AI-based mobility applications and gives in-depth examples for ADAS/AD systems. 

This document presents a set of generic, use case-agnostic requirements designed to address the unique safety 
and security challenges of AI within the automotive domain. These requirements can be adapted to various 
use cases and risk levels, ensuring they align with both current and future regulatory frameworks and 
standards. While systems based on traditional software, including symbolic AI-systems such as decision trees, 
are already well covered by current regulation and standards there is high demand for an extension to 
connectionist AI-based systems such as the nowadays widely used deep neural networks (Figure 2). The 

proposed process shall support the definition of thresholds and identify gaps necessary for testing and 
auditing AI- systems at a technical level.  

 

Given the critical nature of ensuring the safety and security of ADAS and AD vehicles, the generic 
requirements focus on evaluating the robustness, transparency, and security of the AI’s decision-making 
processes.  

The scope of this technical guideline covers: 

 Mapping and extension of requirements from applicable automotive safety standards, including ISO 
26262:2018 [6] for functional safety, the Hazard and Risk Assessment (HARA) methodology and ISO 
21448:2022 [7] for safety of the intended functionality (SOTIF), for AI specific properties. 

 Robustness against AI related cybersecurity attacks in accordance with established AI security 
frameworks and state-of-the-art research. 

 A list of generic, use case-independent requirements, adaptable to specific use cases and risk levels. 

Figure 2 Demand for Standards, Best-Practices and Evaluation Methodologies for AI-based Systems. 
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 Generalized iterative audit approach to standardize and acquire practical knowledge for auditing AI 
systems, particularly addressing the gap of standardization and established thresholds for safety and 
security-critical AI systems. 

 Transition from generic to specific audit requirements, focusing on exploring methods and sources 
for defining and selecting thresholds and metrics for AI systems that aim to replicate non-
quantifiable human behavior. 

The requirements and processes defined in this document specifically focus on verifying the security and 
safety of the AI component of the system. They do not cover ethical considerations and compliance with 
relevant data privacy regulations (e.g., GDPR [8]). 
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3 Terms and Definitions 

3.1 Key Words 

In the following text, several key words of instructional nature are used. The key words “MUST”, “MUST 
NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and 
“OPTIONAL” in this document are to be interpreted as described in RFC 2119 [9]. 

• “shall”: The following statement is an absolute requirement. Equivalent to “MUST”, “REQUIRED”. 
• “shall not”: The following statement is an absolute prohibition. Equivalent to “MUST NOT”. 
• “should”: There may exist one or several reasons why the instruction is only followed partly or not 

at all. When the referred subject is ignored, a clear justification shall be given. Equivalent to 
“RECOMMENDED”. 

• “should not”: Again, when there is one or multiple reasons for performing the stated instruction, 
then it may be performed when given a clear justification. Equivalent to “NOT RECOMMENDED”. 

• “may”: Indicates an optional instruction or task.  

 

The following definitions are, if available, based on [10].  

 

Advanced Driver Assistance Systems (ADAS) are a set of safety features in vehicles that assist drivers in 
controlling the vehicle. ADAS typically include functionalities such as automatic emergency braking, lane-
keeping assistance, adaptive cruise control, and blind-spot detection, providing incremental levels of 
autonomy. 

Autonomous Driving (AD) refers to the capability of a vehicle to operate (at least partly) without human 
intervention using a combination of sensors and vehicle systems to perform the driving task. Fully 
autonomous vehicles are designed to navigate and make decisions on the road under a wide range of 
conditions. 

AI lifecycle consists of the design and development phase of the AI-based system, including but not limited 
to the collection, selection and processing of data and the choice of the model and the training process, the 
validation phase, the deployment phase and the monitoring phase. The life cycle ends when the AI-based 
system is no longer operational. 

Artificial Intelligence (AI) is a set of methods or automated entities that together build, optimize and apply a 
model so that the system can, for a given set of predefined tasks, compute predictions, recommendations, or 
decisions. 

AI system is a machine-based system that is capable of influencing the environment by producing an output 
(predictions, recommendations or decisions) for a given set of objectives. It uses machine learning and/or 
human-based data and inputs to perceive real and/or virtual environments; abstract these perceptions into 
models through analysis in an automated manner (e.g., with machine learning), or manually; and use model 
inference to formulate options for outcomes. AI systems are designed to operate with varying levels of 
autonomy. 

AI system component is an element of a system using artificial intelligence. Examples are: image pre-
processing filter, image segmentation and traffic sign classification components. There is a trend towards the 
usage of end-to-end learning of larger AI models that perform complex tasks without intermediate steps, e.g. 
including pre-processing, image segmentation and traffic sign classification in one AI model.  

Automotive Safety Integrity Level (ASIL) is a risk classification scheme defined by the ISO 26262. It 
categorizes the risk of potential hazards in automotive systems into four levels (A to D) and a category for QM 
(Quality Management), where ASIL D represents the highest safety requirement. The ASIL level is determined 
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by the severity, exposure, and controllability of risks, ensuring that adequate safety measures are applied to 
critical systems, such as those used in autonomous vehicles. 

Bias is a systematic difference in treatment (including categorization/observation) of certain objects (e.g. 
natural persons, or groups) in comparison to others. 

Black box is a system / software in which the detailed architecture and processing is unknown. 

Black/White-box attacks: While a black-box attack is performed without knowledge of details of the 
structure and parameters of the AI-model that is attacked, a white-box attack uses such information. 

Black/Grey/White box testing are tests of systems / software in which architecture and processing is 
unknown / partially known / known. 

Connectionist AI (cAI)  systems usually consist of many nodes, called neurons, which are connected with each 
other in specific patterns, depending on the AI model at hand. Examples of cAI systems are neural networks 
and support vector machines. In many applications cAI systems are more powerful when compared to sAI 
systems, e.g. in computer vision. In the majority of cases parameters of cAI systems may not be directly set by 
the developer. Instead, machine learning algorithms are used together with data to train these systems. The 
quality of the resulting cAI system is crucially dependent on the quality and quantity of the training data. In 
contrast to sAI systems cAI systems are in most cases not easily interpretable and not formally verifiable. 

Conventional software is usually created by a process called traditional programming. The programmer 
manually codes rules using a programming language. 

Dataset is a collection of data with a shared format and goal-relevant content. 

Deep learning is a process whereby neural networks use multiple layers of processing intended to extract 
progressively higher-level features from data. 

Explainability means a property of an AI-based system to express important factors influencing the system’s 
outcome in a way that humans can understand. 

Generative Adversarial Network (GAN) unsupervised machine learning framework using two competing 
neural networks with the goal to train a model that produces outputs with realistic characteristics. 

Generic Requirement refers to a broad, overarching requirement that outlines the fundamental 
performance, safety, or functional needs of an AI system or autonomous vehicle. It forms the basis for 
developing more specific requirements, ensuring that the system meets general expectations for operation, 
safety, or security. 

Hardware-in-the-loop (HIL) is a simulation method where real-time testing of the vehicle’s hardware 
components, such as sensors and control units, is performed in conjunction with software simulations. HIL 
tests ensure that the system behaves as expected when interfaced with the actual hardware under simulated 
conditions before deployment in a vehicle. 

Hazard and Risk Assessment (HARA) is a structured methodology used in the development of automotive 
safety systems to identify potential hazards, evaluate associated risks, and define necessary safety measures.  

Machine learning (ML) is a collection of data-based computational techniques to create an ability to learn 
without following explicit instructions such that the model's behaviour reflects patterns in data or experience. 

Machine learning model is a computer science construct that generates an inference, or prediction, based on 
input data. 

Model is a physical, mathematical, or otherwise logical representation of a system, entity, phenomenon, 
process or data. 

Operational Design Domain (ODD) defines the specific conditions and environments under which an 
automated driving function, including its AI components, is designed to operate. These include parameters 
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such as weather, road types, traffic conditions, and speed ranges. Ensuring that the vehicle operates only 
within its ODD is essential for maintaining safety. 

Predictability is a property of an AI-based system that enables reliable assumptions by stakeholders about 
the output. 

Reliability is a property of consistent intended behaviour and results. 

Resilience is the ability of a system to recover operational condition quickly following an incident. 

Road User Detection (RUD) involves the identification and classification of all entities on the road, such as 
vehicles, pedestrians, cyclists, and animals, using a combination of sensors (e.g., radar, lidar, and cameras) and 
potentially AI algorithms. Effective RUD is essential for autonomous vehicles to make safe and informed 
decisions, particularly in complex or unpredictable traffic environments. 

Robustness is the ability of a system to maintain its level of performance under a wide range of circumstances. 
This includes the ability of a system to cope with natural and malicious perturbations within the systems 
input space. 

Safety is the condition of being protected from potential harm or danger, especially in the context of 
autonomous driving. AI in safety critical applications must be designed, implemented and tested in such a 
way that safety risks are  minimized for the vehicle’s occupants, other road users and the environment under 
all foreseeable conditions. 

Security refers to the protection of AI systems, data, and communication channels in autonomous vehicles 
from unauthorized access, malicious attacks, or breaches. Ensuring robust security measures is crucial to 
preventing cybersecurity threats that could compromise the safety or operation of the vehicle. 

Software-in-the-loop (SIL) refers to a simulation technique used during the development of autonomous 
driving systems. In SIL, the software components of the system are tested in a virtual environment that 
mimics real-world conditions, allowing for early validation of algorithms and safety-critical functions 
without physical hardware. 

Specific Requirement provides detailed criteria that a system must meet to fulfill a particular functional or 
safety objective. For example, a specific requirement for an autonomous driving system employing AI might 
stipulate the minimum detection range for pedestrians or the maximum latency allowed in decision-making 
algorithms. 

Supervised learning is a type of machine learning that makes use of labelled data during training. 

Symbolic AI (sAI) explicitly encodes knowledge using symbolic representations. An example of such a system 
is a decision tree. Interpreting and formally verifying a sAI system is generally possible and much easier to 
achieve when compared to connectionist AI systems. 

Testing Criteria determine the specific conditions, metrics, and benchmarks used to assess whether a  system 
or a system component, e.g. an AD or ADAS system using AI, meets its specific requirements. These criteria 
may include performance thresholds, environmental simulations, and safety tests to evaluate the system’s 
robustness, reliability, and safety under different scenarios. 

Test Scenario is an evaluation setup designed to assess the ability of the system under test, e.g. an AD or ADAS 
system, regarding the test criteria. Test scenarios differ across audit stages: simulation utilizes digital images, 
transition testing employs digital data in a controlled real-world setting, and real-world testing involves 
physical requisites in actual environments. 

Training is the process to tune the parameters of a machine-learning model. 

Training data is a subset of input data samples used to train a machine learning model 

Transparency of a system is property of a system to communicate information to stakeholders. 

Trustworthiness is the ability to meet stakeholders’ expectations in a verifiable way. 
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Uncertainty in AI systems refers to the presence of variables or conditions where the system's output or 
decision-making may not be fully reliable due to incomplete or ambiguous data. For AD and ADAS vehicles, 
managing uncertainty—such as unpredictable weather or unclear road markings—is critical to ensuring safe 
decision-making processes. 

Unsupervised learning is a type of machine learning that makes use of unlabelled data during training. 

Validation is done to ensure software usability and capacity to fulfil the customer needs. 

Validation data is data used to assess the performance of a final machine learning model. 

Verification is done to ensure the software is of high quality, well-engineered, robust, and error-free without 
getting into its usability. 

White box is a system / software in which the detailed architecture and processing is known. 
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4 Challenges in Compliance to current Safety and 
Security Frameworks 

The integration of AI-specific requirements into existing regulatory frameworks and standards is essential for 
ensuring both the safety and security of AI- systems, particularly in critical domains like automotive, ADAS, 
and autonomous driving. However, adapting traditional processes to account for the unique properties of AI 
systems presents significant challenges. The established standards for safety and security, while 
comprehensive for traditional software, may not directly address the complexities and risks introduced by 
AI, such as the "black box" nature of models, non-linearity, unpredictable behavior, and uncertain 
interpretability of results. Therefore, these challenges necessitate the extension and modification of existing 
regulatory frameworks to adequately capture AI-specific risks. 

HARA Process as a Foundation for Security and Safety Requirements 

The Hazard and Risk Assessment (HARA) process, defined in standards like ISO 26262:2018 and ISO 25119 
[11], provides a structured approach to identifying, evaluating, and mitigating risks in safety-critical systems. 
HARA focuses on evaluating hazards based on factors like exposure, controllability, and severity, which leads 
to the derivation of safety requirements, often classified by Automotive Safety Integrity Levels (ASIL). If AI 
components are to be included in system design and development, a corresponding expert shall be consulted 
for the process. AI specifics may have influence on the ASIL-determining factors, especially hazard exposure. 
The following points should be considered:  

Lack of Transparency and Explainability (Black Box Nature of AI): Unlike traditional (software) systems, 
connectionist AI models such as neural networks, including deep learning systems, acts as a “black box”, 
making it difficult or almost impossible for complex AI systems to trace and explain their decision-making 
processes. This impedes risk evaluation, the derivation of safety measures and the estimation of the residual 
risk. 

Non-linear, unpredictable Behavior: Connectionist AI models often exhibit an unpredictable behavior to 
unseen data, making the task of assessing hazards and verifying safety measures complex. 

Uncertainty in Testing Results: AI systems, particularly those using connectionist approaches like neural 
networks, can produce faulty or unintended outputs when exposed to new data, as even minor changes in the 
input can lead to significant changes in their responses. This uncertainty creates difficulties in determining 
the significance of test results and whether they sufficiently demonstrate safety or performance. 

The following Table 1 summarizes the most significant challenges in aligning AI systems with existing safety 
and security frameworks. 

 

Table 1: Key challenges in adapting AI systems to traditional safety and security frameworks. 

Topic Traditional Software and 
Systems 

AI-based systems Challenges in Compliance 

Transparency 
/ 

Explainability 

Instructions line by line 
provide full transparency and 

explainability 

However: complex code  can 
still be very hard to read and 

understand for humans 

The functionality of AI 
systems is often like a "Black 

Box”. 

Difficult to trace decisions and 
outputs back to specific inputs 

and define the underlying rules. 
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Topic Traditional Software and 
Systems 

AI-based systems Challenges in Compliance 

Verifiability 
Established methods for 

software unit verification 
available 

Often large deep neural 
networks (DNNs) with no 
specific software units to 

verify 

Formal verification of the AI 
model almost unfeasible due to 

lack of tools and methods 

Testability 
Established methods for 

software testing 
Uncertain robustness and 

significance of testing results 

Traditional testing methods are 
less effective and new, AI-specific 

approaches, are required. 

Availability 
of standards 

Standards / Best Practices 
available, such as ISO 26262, 

21448, ASPICE 

Standards and frameworks 
covering AI-Systems within 
safety and security domains 
only partially available, such 
as ASPICE 4.0 with Machine 
Learning Engineering (MLE) 
sub processes, respectively 

missing instructions for 
adaptation in practice. 

Low availability of established 
best practices makes 

conventional frameworks hard 
to apply. 

 

 

Specific Challenges in alignment with existing standards 

AI-specific risks must be integrated into existing safety and security frameworks to ensure compliance. 
Several existing standards provide valuable foundations, though they need to be adapted for AI systems. The 
most significant aspects for the most relevant regulation for road vehicles can be listed as follows: 

 

ISO 26262:2018: As a foundational standard for functional safety in road vehicles, ISO 26262 offers a 
structured HARA process. While it provides guidelines for traditional systems, additional layers must be 
added to address AI-specific risks, including model robustness, explainability, and interpretability. 

 

ISO 21448:2022 (Safety of the Intended Functionality - SOTIF): This standard focuses on systems where no 
component failures occur, but hazards may still arise due to inadequate functionality, which is highly relevant 
for AI. SOTIF helps ensure that AI systems behave safely in real-world scenarios, even in the absence of faults. 
When implementing SOTIF for AI Systems, the challenge lies in validating that models trained on limited 
datasets can generalize safely across diverse, unpredictable conditions. 

 

ISO/DPAS 8800 [12]: As an emerging standard currently under development, ISO/DPAS 8800 will address 
safety requirements specific to AI in road vehicles. This standard will fill existing gaps by providing a 
framework for mitigating AI risks and vulnerabilities, with a focus on safety-critical AI systems. The 
preliminary scope includes a generic process of risk assessment for both AI and non-AI systems. It does not 
include testing criteria, specific values, or thresholds. 

 

UNECE R155 and R156 [13, 14]:  These regulations cover cybersecurity and software updates, ensuring that 
connected and automated vehicles are protected against cyberattacks. AI systems are particularly vulnerable 
due to their reliance on large datasets and complex models, which can be targeted for adversarial 
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manipulation. UNECE R155 is critical for embedding AI security measures within a broader regulatory 
framework, ensuring that AI models remain secure and resilient against attacks. 

 

ASPICE 4.0: ASPICE (Automotive Systems Process Improvement and Capability dEtermination) is a process 
assessment model derived from ISO/IEC 15504 for standardizing software and system engineering in the 
automotive industry. ASPICE provides a framework for assessing and improving development processes 
across system, software, and hardware levels. In version 4.0, ASPICE has incorporated specialized guidelines 
in the Machine Learning Engineering Process Group to address the unique challenges of ML development. 
Traditionally, ASPICE primarily addresses deterministic systems, while ML introduces probabilistic 
behaviors and requires specific processes for handling data-driven development. 
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5 Generic Requirements for AI-Systems 
The embedding of Artificial Intelligence (AI) into vehicles requires compliance to (existing) standards with 
regard to safety and security. These are crucial to maintain a certain performance, reliability, security and 
safety of these systems and enable a successful type-approval of the vehicle. This chapter outlines a 
methodical approach to derive generic requirements for AI- systems in vehicles from existing security and 
safety standards and regulations, especially considering domain specific regulations and standards. To allow 
for a deep technical grounding as a first step the primary focus is put on AI functionalities within systems 
targeting ADAS/AD features. Due to their generic nature the process and the requirements may already be  
applied in a broader context and future revisions will incorporate insights from other use cases. 

5.1 Prerequisites  

Before initiating the definition and derivation of generic requirements, several key considerations need to be 
addressed. A first consideration is identifying and analyzing the relevant domain-specific regulations and 
standards, which may include (automotive related) ISO standards, UNECE regulations, and industry-specific 
norms. Additionally, best practices, technical guidelines, and other use-case-specific requirements related to 
automotive technologies shall be considered. 

5.1.1 Recommended Sources 

The following Table 2 provides an overview of potential sources for standards, best practices, frameworks 
etc. with regard to the automotive sector, specifically focusing on AI and AD/ADAS systems. It highlights 
the scope of each standard, indicating whether it addresses AI-specific concerns, AD/ADAS-specific 
requirements, or both. It is important to notice that in addition to identifying existing regulations, actively 
monitoring upcoming regulations is also strongly recommended. 

 

Table 2: Overview of the most relevant safety and security standards, highlighting their relevance to AI and AD/ADAS 
systems. 

Standard Topicu 

Also 
addresses AI-

specific 
requirements 

AD/ADAS 
specific 

Automotive SPICE 4.0 
[15] 

Process assessment for development processes in 
automotive. 

Yes No 

ISO 26262:2018 [6] Requirements ensuring the functional safety of road 
vehicles. 

No No 

ISO 21448:2022 [7] Guidance on design, verification, and validation 
measures to ensure safety of the intended functionality. 

No Partially 

ISO/IEC TR 24028 [16] Survey on approaches regarding the trustworthiness of 
AI systems, such as explainability, risks/threats, and 
their mitigation strategies. 

Yes No 

ISO/IEC TR 24029-1 [17] Background of existing methods for robustness 
assessment of neural networks. 

Yes No 

IEC 61508:2010 [18] General safety requirements towards 
electrical/electronic/programmable electronic safety-
related systems. 

Partially No 
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Standard Topicu 

Also 
addresses AI-

specific 
requirements 

AD/ADAS 
specific 

UNECE WP.29 
(R155/R156) [13] 

Cybersecurity and software updates for connected and 
automated vehicles. 

No Yes 

ISO/DPAS 8800 
(Upcoming) 

Addressing AI risks in safety-related systems in road 
vehicles. 

Yes Yes 

UL 4600 [19] Safety standard focused on evaluating the safety of fully 
autonomous systems, including risk assessment, 
validation, and safety arguments for autonomous 
vehicles. 

No Yes 

ISO/SAE 21434 [20] Requirements for cybersecurity risk management in the 
engineering of electrical and electronic systems within 
road vehicles, covering the entire vehicle lifecycle. 

No Yes 

ISO 25119 [11] Safety requirements for the development and design of 
control systems in agricultural and forestry machinery, 
ensuring functional safety throughout the machinery's 
lifecycle. 

No Partially 

 

 

5.1.2 Recommendation for the Derivation of Generic Requirements 

In the following, a recommended process utilized to derive generic requirements is introduced. As described 
in the introduction to Chapter 4, the scope of this document is to provide guidance on defining general safety 
and security requirements specific to AI and AD/ADAS systems, outlining how to specify these requirements 
for an actual Use-Case and derive corresponding test criteria. The generic requirements are defined across the 
entire life-cycle of the system and encompass aspects such as robustness, security interpretability, 
monitoring, and documentation. One of the most important aspects is to determine the potential risk level 
of the system. These requirements should take into account the unique characteristics of AI systems, 
including challenges in explainability and vulnerabilities to adversarial and unseen inputs. 

The derivation process begins with a comprehensive analysis of multiple sources (see Table 2) such as norms, 
standards, technical reports, research studies and other sector related regulation. The most significant source 
is the ISO 26262 which acts as the foundation, providing extensive coverage of requirements and processes 
for ensuring functional safety in automotive electronic systems. In addition, the UL 4600 is also used to 
complement ISO 26262 by addressing additional safety concerns, while ISO/SAE 21434 and UNECE R 155 
provide critical security-related guidelines. As a first step, all relevant requirements should be identified and 
gathered from applicable sources, taking into account the appropriate safety and/or security levels.  

5.1.2.1 Identification of risk levels – ASIL categorization 

For example, the ISO 26262 focuses on the development of systems, hardware, and software, offering detailed 
procedures and safety requirements for vehicles. The implementation of these safety measures can vary based 
on the system’s assessed integrity level. A key concept in ISO 26262 is the Automotive Safety Integrity Level 
(ASIL), which classifies system risk into four dedicated levels, ASIL A to ASIL D. Minor hazards can be 
categorized as QM (Quality Management) and do not impose any requirements. The corresponding risk level 
is specified by the potential hazard a system poses. Based on the factors exposure, severity, and the system's 
controllability, the ASIL is determined according the scheme outlined in Table 3. For example, ASIL D 
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represents the highest risk level, associated with the most severe consequences, highest exposure, and lowest 
controllability. In cases where Quality Management (QM) methods already mitigate basic risks, it may not be 
necessary to apply the more stringent methods recommended for higher ASIL classifications. 

Table 3 Overview on the derivation of the ASIl classifications. 

Severity Exposure Controllability 

Simple Normal 
Difficult, 

uncontrollable 
Light and moderate 
injuries 

Very low QM QM QM 
Low QM QM QM 
Medium QM QM A 
High QM A B 

Severe and life 
threating injuries, 
survival probable 

Very low QM QM QM 
Low QM QM A 
Medium QM A B 
High A B C 

Life threatening and 
fatal injuries 

Very low QM QM A 
Low QM A B 
Medium A B C 
High B C D 

 

5.1.2.2 Identification of underlying methodologies 

A widely recognized and established framework for system development is the V-Model [21], depicted in 
Figure 3: its stages include system-level design, subsystem integration (architectural and unit design) and code 
implementation on the left side, and corresponding testing and verification of units, integration and the 
whole system on the right side. This structured approach facilitates the implementation and verification of 
safety measures at every level of development. The V-Model ensures systematic traceability from high-level 
safety and security requirements down to individual components and their corresponding tests, all in 
accordance with ISO 26262. 

 

 

 

 

 

 

 

 

 

 

 

 

For each stage of the V-Model, ISO 26262 defines certain requirements and methodologies with regard to the 
ASIL level. The rigor and depth of the required activities increase as the ASIL level rises, ensuring that the 
safety measures correspond to the potential risk. 

Figure 3: Illustration of the V-Model. 
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These methodologies (see Figure 4) range from requirements analysis and boundary condition evaluation to 
more advanced techniques such as analyzing functional dependencies and error guessing. The recommended 
methods vary depending on the ASIL level, with higher levels requiring more comprehensive approaches to 
cover complex interactions, dependencies, and potential failures. For example, while certain methods may 
suffice for lower ASIL levels, higher levels demand more in-depth techniques to ensure that every critical 
aspect of the system has been evaluated thoroughly. 

 

 

Subsequently general requirements are extracted from these identified aspects. These requirements shall be 
comprehensive, covering the most critical elements of safety and security, and sufficiently detailed to enable 
thorough evaluation and provide adequate coverage across a wide range of risks and threats. 

5.2 Recommendation for Requirements Elicitation 

When deriving generic and AI-specific requirements, it is crucial to follow a structured process as shown in 
Figure 5, ensuring that both safety- and security-critical and AI-specific elements are adequately mapped to 
each other. The previous discussion on the V-Model framework and its alignment with ISO 26262 provides a 
foundation for understanding how the integration of AI-specific properties can align with existing standards. 
This is particularly important when identifying the potential risks and threats posed by AI-based systems, 
such as robustness to unseen data, adversarial perturbations, and interpretability/explainability challenges.  

Figure 4: Example for ISO 26262:2018 [x] requirement methodologies (cp. Appendix B.1 
Requirement Groups for a list of the group abbreviations).. 

Figure 5: Illustration of the requirements elicitation process for AI-specific generic requirements. 
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5.2.1 Derivation from existing Standards (ASIL recommendations) 

In general, the V-Model approach remains applicable to AI-driven systems. However, the embedding of AI 
requires additional considerations, particularly in terms of risk mitigation and safety validation, which differ 
from traditional (automotive) systems. Thus, the mapping of both requirement sources —ASIL 
recommendations and AI-specific risks and threats— is a critical step in the process. This alignment ensures 
that established methodologies are systematically addressed to the specific vulnerabilities of the AI system, 
resulting in new requirements that cover both conventional and AI-driven risks.  

 

The example in Figure 6 illustrates the process of mapping ASIL recommendations with AI-specific risks and 
threats to derive AI-specific generic requirements. In the first example, the AI risk of uncertain robustness to 
unseen data is mapped to traditional safety methods, such as DI81 (analysis of environmental conditions) and 
DI9 (analysis of field experience), to generate the requirement that the environmental context must 
correspond to the operational design domain (ODD). This addresses the AI’s ability to function in diverse, 
real-world environments. The AI-related risk of uncertain robustness to unseen data refers to the challenge 
AI systems face when encountering input conditions, they were not trained or validated on, which may lead 
to unpredictable and unintended behavior.  

 
1 Cp. Appendix B.1 Requirement Groups for a list of the group abbreviations. 

Figure 6: Illustration of mapping the ISO 26262:2018 recommendations to AI-specific risk and threats in 
order to derive a AI-specific generic requirement related to the ODD. 
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The second example in Figure 7 above highlights the mapping of ASIL recommendations from the category 
“Unit Tests”, such as semi-formal verification (UV4), formal verification (UV5), and requirements-based 
testing (UV10), to AI-specific risks like uncertain robustness to unseen data, adversarial perturbations, and 
adversarial attacks. By aligning these non-AI-specific testing methods with AI-related risks and threats, three 
new generic AI-specific requirements have been derived. 

5.2.2 Additional Requirements 

While the prior described structured approach to deriving requirements from existing methodologies (e.g. 
ISO 26262) provides a solid foundation, it may not fully address all AI-specific aspects for an AI-based system 
in its intended use-case. As a result, additional requirements may need to be introduced to cover remaining 
safety and security concerns. This section provides recommendations for the definition of additional 
requirements.  To develop additional requirements, the following aspects should be considered and evaluated 
for coverage by existing methodologies. If the current methodologies are insufficient or fail to fully address 
these aspects, new requirements should be introduced. These additional requirements shall be also 
categorized by a four-level risk and damage classification (low to very high), which directly maps to ASIL A 
through D. Recommended aspects for definition are:  

• Residual AI model robustness considerations: Shall be tested against potential threats, with 
increasing rigor as risk levels rise. 

• Dataset traceability and verification 
• Dataset coverage and size: shall be able to represent the operational input domain, with more 

stringent requirements for higher risks. 
• Datasets must be managed by a structured approach. 
• Dataset uncertainty and safety verification should be conducted, with higher priority for higher risk 

levels. 
• Adequate dataset preparation is necessary, with more emphasis on higher risk scenarios. 

Considering the aspects above, several supplementary requirements can be added to those derived from 
existing standards to address residual AI-specific risks and threats. This approach will yield to a 
comprehensive set of general requirements for an AI system, covering all relevant aspects. 

Figure 7: Illustration of mapping the ISO 26262:2018 recommendations to AI-specific risk and threats in order to 
derive AI-specific generic requirements related to (semi-)formal verification. 
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5.2.2.1 Recommended Structure of generic AI-specific requirements 

To ensure a clear and accurate definition and to offer proper guidance for the requirement's application, it is 
further recommended to include a description of the requirement's purpose. The following illustration in 
Figure 8presents an example of a resulting requirement consisting of a generic formulation and a supportive 
description. 

 

5.2.2.2 Remark 

The entire approach of deriving generic requirements should be considered as an iterative process, 
necessitating continuous refinement as more use-cases and domains are considered and new AI-related risks, 
vulnerabilities, and attacks emerge. Additionally, it is highly recommended to monitor and incorporate newly 
introduced industry-specific or domain-specific standards and frameworks (e.g. the upcoming ISO 8800). 

  

Figure 8: Example of the recommended structure of a generic requirement. 
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5.2.3 Recommendation Summary 

The described process of deriving generic requirements for AI-based systems, particularly in safety- and 
security critical applications like ADAS/AD, follows a structured approach to ensure a high coverage of both 
conventional and AI-specific risks. The following illustration in Figure 9 outlines the entire process: 

 

The recommended most significant steps are:  

1. Analyzing existing Standards and Frameworks: Begin by utilizing well-established standards, such 
as ISO 26262, ISO/PAS 21448, and IEC 61508, which offer a solid foundation for defining system 
safety, functional integrity, and operational safety measures for traditional automotive systems. 

2. Identify AI-Specific Risks and Threats of the Application: AI systems introduce new risks that aren't 
fully addressed by traditional safety standards. These risks include e.g. uncertain robustness to unseen 
data, adversarial attacks, and perturbations, as well as issues around interpretability. These risks must 
be identified through research, publications, and guidelines relevant to the specific AI application. 

3. Mapping of Non-AI Requirements and Methodologies to AI-Specific Aspects: To bridge the gap 
between conventional safety methods and AI-specific risks, non-AI methodologies must be mapped 
to AI-specific challenges. This mapping involves adapting traditional safety approaches to AI-related 
problems. Key guidelines for this mapping include: 

a. Relevance: Determine if existing methodologies (e.g., formal verification, requirements-
based testing) are relevant to AI-specific risks, such as robustness or vulnerability of AI 
models. 

b. Adaptability: Assess how conventional safety testing methods can be adapted to address AI-
specific challenges. For example, requirements-based testing can be modified to validate AI 
models against adversarial inputs or out-of-distribution data. 

c. Risk Coverage: Ensure that mapped methodologies sufficiently address both functional 
safety and the added risks introduced by AI technologies. 

Figure 9: Process of deriving generic requirements for AI-based systems. The most 
significant steps are numbered (blue circles) and explained in the text. 
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4. Evaluate Coverage by Existing Requirements: Once AI-specific risks are identified, assess the current 
set of requirements derived from established standards to see if they comprehensively address these 
AI-specific risks. This includes reviewing the coverage of AI-related vulnerabilities within traditional 
safety frameworks. 

5. Introduce Additional Requirements in case of Gaps: If existing requirements fall short in addressing 
AI-specific risks, introduce additional, proprietary requirements to bridge these gaps. These 
supplementary requirements must be derived to cover areas such as dataset robustness, AI model 
verification, operational domain coverage, and resilience to adversarial inputs. Requirements should 
also be mapped to specific risk levels, ensuring alignment with the Automotive Safety Integrity Level 
(ASIL) framework where applicable. 

6. Iterative Refinement and Update: The process is iterative, requiring continuous refinement as new 
AI-related risks, vulnerabilities and attacks emerge. 

5.3 List of Generic Requirements for AI Systems in Automotive 

In the development and evaluation of AI systems within the automotive domain, ensuring security, reliability, 
and performance is critical. The following high-level requirements (summarized in Table 4) provide a 
structured approach to assessing key aspects of an AI system’s design, operation, and robustness. These 
requirements cover a wide range of concerns, including system architecture, data integrity, performance 
monitoring, robustness against threats, and safety mechanisms. By adhering to these guidelines, automotive 
AI systems can achieve the necessary levels of trustworthiness and safety, ensuring reliable performance 
under diverse and challenging conditions. Each requirement is assigned to its corresponding life cycle phases, 
i.e. when the requirement is applicable and effects the system, from ISO 5338 [22]. Additionally, each 
requirement is assigned to one out of the following 7 general categories as ground pillars for safe and secure 
AI systems: Design & Development, Data Management, Performance, Robustness, Monitoring, Explainability 
and Interfaces. The life cycle and the category assignments help to create a comprehensive and refined 
overview to elucidate the specific points of application for each requirement and their influenced aspects 
enhancing the safety and security of the system. 

Table 4: List of generic security requirements. 

ID Description Life Cycle Categories Category 

1 
The AI design and development process shall adhere to 

existing standards and regulations, and it shall be tracked 
and documented. 

Design & Development 
Design & 

Development 

2 
The system shall implement safety mechanisms to prevent 

failures of the AI component. 
Design & Development, 
Operation & Monitoring 

Design & 
Development 

3 
The least complex AI model architecture shall be chosen to 

limit risks and enhance explainability. 
Design & Development, 

Verification & Validation 
Design & 

Development 

4 
The datasets shall be managed according to standardized 
methods, and all key processes shall be well-documented. 

Design & Development, 
Verification & Validation 

Data 
Management 

5 
The datasets shall undergo quality assessments and be 

adequately prepared for training and testing. 
Design & Development, 

Verification & Validation 
Data 

Management 

6 
The AI system shall be developed, tested, and operated 

within its operational design domain. 

Design & Development, 
Verification & Validation, 
Deployment, Operation & 

Monitoring 

Performance 

7 
The AI model shall consistently meet performance 

requirements. 

Verification & Validation, 
Deployment, Operation & 

Monitoring 
Performance 

8 
The AI model and system shall be tested against test 

scenarios created by domain experts. 
Verification & Validation Performance 



5 Generic Requirements for AI-Systems 

Bundesamt für Sicherheit in der Informationstechnik 24 

ID Description Life Cycle Categories Category 

9 
The AI model shall maintain acceptable performance in 

expected and unexpected scenarios including corner cases 
and out-of-distribution data. 

Verification & Validation, 
Operation & Monitoring 

Performance 

10 
The system shall be robust against relevant AI-related 

threats. 
Verification & Validation, 
Operation & Monitoring 

Robustness 

11 
The system shall monitor and validate the inputs and 

outputs of the AI model to ensure correctness and safety. 
Operation & Monitoring Monitoring 

12 
The system shall continuously track AI model-related 

feedback, incidents and its state during operation. 
Operation & Monitoring Monitoring 

13 
The system shall provide explanations of the AI model's 

decisions, particularly for incidents or errors. 
Verification & Validation, 
Operation & Monitoring 

Explainability 

14 
The pre- and postprocessing of the AI model's in- and 

output shall be suitable. 

Design & Development, 
Verification & Validation, 
Operation & Monitoring 

Interfaces 

15 
The interfaces between system components and the AI 

model shall be properly configured, coordinated and 
designed. 

Design & Development, 
Verification & Validation, 

Deployment 
Interfaces 

 

In the following, the 15 generic security requirements are introduced in more detail. The relation to the 
requirements and recommendations from ISO 26262 and a short description is given. 

ID Description Life Cycle Categories Category 

1 
The AI design and development process shall adhere to 

existing standards and regulations, and it shall be tracked 
and documented. 

Design & Development 
Design & 

Development 

Based on: MC-family, NU-family, DU-family, UV-family, from ISO 26262 

The AI design and development process must comply with all applicable standards and regulations to ensure 
quality, safety, and legal adherence. This process shall be tracked and documented at each stage to maintain 
accountability, facilitate audits, and support system improvements. The documentation will include version 
control for AI model(s) and involved training data, testing results, as well as compliance checks. Industry 
standards and best-practices, e.g., ASPICE, should be adhered to wherever possible ensuring a transparent and 
traceable workflow. 

ID Description Life Cycle Categories Category 

2 
The system shall implement safety mechanisms to prevent 

failures of the AI component. 
Design & Development, 
Operation & Monitoring 

Design & 
Development 

Based on: EH-family from ISO 26262 

Fail-safe mechanisms and parallel redundant models should be implemented to prevent complete system 
failures and ensure the system remains operational under adverse conditions, minimizing the risk of critical 
failure. 

ID Description Life Cycle Categories Category 

3 
The least complex AI model architecture shall be chosen to 

limit risks and enhance explainability. 
Design & Development, 

Verification & Validation 
Design & 

Development 
Additional Requirement (not based on available standards) 

The system should select the simplest model architecture capable of solving the task making it easier to 
explain and verify model behavior. 
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ID Description Life Cycle Categories Category 

4 
The datasets shall be managed according to standardized 
methods, and all key processes shall be well-documented. 

Design & Development, 
Verification & Validation 

Data 
Management 

Based on: DV-family from ISO 26262 

The origin of datasets should be traceable, verified, and documented to ensure integrity. Proper dataset 
versioning and tracking of labeling processes are essential to ensure data quality and transparency throughout 
the AI system lifecycle. 

The datasets should be prepared using standardized methods, with clear documentation of the processes 
involved. This includes dataset characteristics and key processes to ensure consistency and reproducibility 
across system evaluations. 

ID Description Life Cycle Categories Category 

5 
The datasets shall undergo quality assessments and be 

adequately prepared for training and testing. 
Design & Development, 

Verification & Validation 
Data 

Management 
Based on: DV-family from ISO 26262 

Datasets should adequately cover the system's operational input domain. The system must assess and 
quantify dataset uncertainty, ensuring data integrity and robustness. Additionally, training, testing, and 
evaluation datasets must be large enough to provide meaningful results and remain independent of one 
another to avoid bias or overfitting or underfitting, ensuring a robust evaluation process. 

ID Description Life Cycle Categories Category 

6 
The AI system shall be developed, tested, and operated 

within its operational design domain. 

Design & Development, 
Verification & Validation, 
Deployment, Operation & 

Monitoring 

Performance 

Based on: DI8, DI9, FP3 from ISO 26262 

The AI system's environment should correspond to its operational design domain (ODD), which has to be well 
defined in advance, and the sensor setup must align with the system's development/training setup to ensure 
reliability and consistency between development and deployment phases. 

ID Description Life Cycle Categories Category 

7 
The AI model shall consistently meet performance 

requirements. 

Verification & Validation, 
Deployment, Operation & 

Monitoring 
Performance 

Based on: DE3, DE4, EH6, ET2, FP2 – 6, IV3, IV4, RS2, RS3, ST3 from ISO 26262 

Key performance indicators (KPIs) should be above a defined threshold, performance must meet worst-case 
error allowances, and the system should ensure reproducibility in real environments. The system should also 
automatically respond to performance issues when critical errors are encountered after deployment. 

ID Description Life Cycle Categories Category 

8 
The AI model and system shall be tested against test 

scenarios created by domain experts. 
Verification & Validation Performance 

Based on: DU3, DU4, RS-family, FP6 from ISO 26262 

Test cases should be derived from knowledge and experience, focusing on error-prone scenarios. The system 
must also provide explanations for failed tests and errors, ensuring issues are properly understood and 
addressed. 
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ID Description Life Cycle Categories Category 

9 
The AI model shall maintain acceptable performance in 

expected and unexpected scenarios including corner cases 
and out-of-distribution data. 

Verification & Validation, 
Operation & Monitoring 

Performance 

Based on: UV10, DU3, DU4, RS-family from ISO 26262 

The system must handle out-of-distribution data, boundary inputs, and corner cases without a significant 
drop in performance. Defined thresholds must be met even in these exceptional situations, ensuring system 
reliability. 

ID Description Life Cycle Categories Category 

10 
The system shall be robust against relevant AI-related 

threats. 
Verification & Validation, 
Operation & Monitoring 

Robustness 

Based on: MC-family, UV4, UV5, UV10, UV12, IV3, ET2, FP4 from ISO 26262 

AI models should use state-of-the-art robustness mitigation strategies. The system must ensure resistance to 
security and operational threats, providing reliable performance under adverse conditions. 

ID Description Life Cycle Categories Category 

11 
The system shall monitor and validate the inputs and 

outputs of the AI model to ensure correctness and safety. 
Operation & Monitoring Monitoring 

Based on: ED-family, EH6 from ISO 26262 

Inputs should be monitored for anomalies before being processed by the model, and outputs should be 
checked for plausibility during execution. 

ID Description Life Cycle Categories Category 

12 
The system shall continuously track AI model-related 

feedback, incidents and its state during operation. 
Operation & Monitoring Monitoring 

Based on: ED3 - 5 from ISO 26262 

Continuous tracking of system feedback and state during operation is essential. All tracked data should be 
reproducible to allow error diagnosis, correction, and system optimization. System errors should be logged 
for future analysis and correction. 

ID Description Life Cycle Categories Category 

13 
The system shall provide explanations of the AI model's 

decisions, particularly for incidents or errors. 
Verification & Validation, 
Operation & Monitoring 

Explainability 

Based on: DU1, UV10, UV14 from ISO 26262 

The AI model must offer explanations for decisions, particularly in boundary values, corner cases, and failed 
tests. These explanations support the evaluation of requirements and aid in identifying the root causes of 
system malfunctions. 

ID Description Life Cycle Categories Category 

14 
The pre- and postprocessing of the AI model's in- and 

output shall be suitable. 

Design & Development, 
Verification & Validation, 
Operation & Monitoring 

Interfaces 

Based on: ED-family, EH6 from ISO 26262 

Corresponding to the monitoring aspect from Requirement 11, a suitable pre- respectively post-processing 
shall be present. The components shall ensure system reliability and security, e.g., by correcting unsuited, 
damaged, or manipulated inputs and outputs. 
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ID Description Life Cycle Categories Category 

15 
The interfaces between system components and the AI 

model shall be properly configured, coordinated and 
designed. 

Design & Development, 
Verification & Validation, 

Deployment 
Interfaces 

Based on: CI1 - 3, IV2, MC6, NU1 – 4 from ISO 26262 

All communication, interfaces, and signals between components must be synchronized, with explicit 
architectural and software unit designs documented to ensure system consistency, reliability, and traceability. 

5.4 Requirements Structure 

The derived Generic (AI) Requirements are not yet applicable and must undergo further specification resulting 
in Specific Requirements, e.g., for the use case and system at hand (see Section 6.1.1). In addition, parameters 
may be set, especially for technical requirements, in order to be able to carry out concrete testing activities. 
Finally, precise Test Criteria for evaluation (see Section 6.1.2) must be established, on the basis of which it is 
ultimately decided whether a requirement is fulfilled by the system and/or corresponding processes or not. 

This top-down hierarchical approach as illustrated in Figure 10 starts with Generic Requirements and their 
assigned general Categories representing their covered aspects. Every category can have multiple Generic 
Requirements. 

Note: Not every category needs to be represented by a Generic Requirement. The requirements are chosen 
based on the respective system and the safety and security analysis that shall be conducted. 

The specification of a Generic Requirement to the use case and the system leads to Specific Requirements. The 
specification of one Generic Requirement leads to at least one Specific Requirement. Overall, the set of resulting 
Specific Requirements must be complete in the sense that all objectives required by the Generic Requirements 
are covered. During the specification process, the Generic Requirements shall be tailored to the existing use 
case and the system-under-test. In particular, this means the refining of the requirements by interpreting and 
defining parameters in the description of the Generic Requirement. The formulation of the generic 
requirements shall be rephrased so all generic placeholders are replaced by use case and/or system-specific 
definitions. 

The next level includes the Test Criteria. Again, a Specific Requirement has a minimum of one, but can have 
multiple Test Criteria assigned. The evaluation of the Test Criteria decides on the fulfilment of the 
Specific Requirement. A Test Criterion is not rigid, but is initially defined and then, if necessary, iteratively 
adapted in the course of the audit process, taking the existing use case and the system behaviour into account. 
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Once defined, the final Test Criteria can be applied for the requirement evaluation. A defined Test Criterion 
may not just be valid for the use case and system it was designed for, but can also be applied to other, similar 
use cases and systems. This reuse has to validated by a dedicated requirement derivation process as described.  

Figure 10: Hierarchical structure of the requirements for AI systems. 
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6 Generalized Audit Approach 
This chapter establishes a general audit approach and evaluation process alongside the introduced 
hierarchical requirements structure from Section 5.4. In order to transition from the generic audit 
requirements, outlined in Section 5.3, which are independent of specific use cases and technical aspects such 
as attacks or metrics, to specific requirements tailored for auditing AI systems, a generalized audit approach 
is proposed. Due to the lack of standardization, the additional lack of experience and practical knowledge in 
setting appropriate thresholds or attack parameters for safety and security critical AI systems, this document 
recommends an iterative approach to close this gap for AI in vehicles with a focus on AD and ADAS systems. 

Since for more established technologies, thresholds and measures for safety and security are generally agreed 
upon due to standardization or due to being physically quantifiable. However, AI systems, which aim to 
replicate or surpass complex human behavior in complex environments, present a challenge because this 
behavior is difficult to quantify. As a result, deriving specific thresholds for AI system testing is not 
straightforward. 

Applying this audit iteratively to comparable use cases will produce a generalized set of specific requirements, 
including test criteria, for a group of use cases. 

 

6.1 Iterative Evaluation Scheme/Audit Process 

To derive common specific requirements and test criteria for comparable use cases, AI components and risk 
levels, it is recommended to apply the generalized audit approach iteratively for specific use cases. The audit 
approach is depicted in Figure 11. 

Figure 11: Audit process from generic requirement over evaluation to verdict. 
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Similar to the established process in the automotive domain, safety and security analyses for the AI 
component and the entire system using established methods as suggested in for example ISO 26262 and the 
upcoming ISO/DPAS 8800 standards should be performed. These analyses should be conducted by domain 
experts and experts with relevant knowledge of both the use case and AI technologies. 

Based on these safety analyses, relevant generic requirements outlined in Section 5.3 should be selected. It 
should be considered whether specific faults, errors, or attacks could occur, lead to hazards, and negatively 
impact the system or the user. Resulting in a tailored set of relevant requirements for the use case. The generic 
requirements should be adjusted with details specific to the AI system, resulting in a set of specific 
requirements for the use case under test. The safety analyses also help to derive the necessary test criteria 
including thresholds, attacks, or metrics to allow testing at a technical level and quantify the residual risk of 
the system. 

This results in a set of specific requirements and associated test criteria for the use case. Tests are then 
conducted across various abstraction levels to provide a pass/fail verdict for each specific requirement based 
on the defined test criteria. 

To derive sets of standardized specific requirements and thresholds, more practical knowledge regarding AI 
safety and security in automotive use cases has to be gained. This is done iteratively by conducting the audit 
process on a wide range of comparable use cases, AI components and risk levels.  Resulting in practical 
knowledge on common errors, suitable metrics, and thresholds. Which in turn will create sets of specific 
requirements and test criteria and test methods for a diverse set of automotive AI-systems. 

The outcome of applying this audit process iteratively will contribute to the standardization of specific 
requirements, test criteria, and procedures for comparable use case classes. 

 

6.1.1 Specification of Generic Requirements 

The generic requirements represent high-level requirements, comparable to those formulated in existing 
standards and best practices. They address security-relevant topics that need to be considered for the 
development, deployment, and operation of a secure AI systems (see Figure 12). Their technology-
independent nature facilitates a better understanding of their content by non-technical personnel and 
simplifies the integration into an overall safety and security management. 

On the other hand, this means that the generic requirements do not explicitly address the actual use case and 
the system to be tested. In some cases, the generic requirements are specific enough to be applied directly. In 
others, they need to be tailored to the existing use case and the system at hand. 

Figure 12: Generic Requirements and AI safety and security categories. 



6 Generalized Audit Approach 

Federal Office for Information Security 31 

The resulting specific requirements (seeFigure 13) include use case- and system-specific information and 
represent an important intermediate step towards the desired technical evaluation of the requirements. The 
process ensures that the requirements are not only generic but adapted to the specific threats, operational 
constraints, and performance demands of the AI system in question. The following subjects, among others, 
shall be considered during specification: 

• AI system characteristics, such as performance, model architecture or input and output. 
• Operational environment of the system and expected inference data. 
• Internal components of the vehicle (e.g. redundant systems) 
• Development process including used training datasets and hyperparameters. 
• Risks and threats (e.g., identified during HARA) and their impact on the system. 
• Corner cases of the use case or the AI system. 
• Additional features and accompanying components or systems related to the AI system, e.g., pre- and 

postprocessing, explainability methods or monitoring and logging functionality. 

The above aspects tailor the generic requirements to the specifics of the AI use case and system, ensuring their 
implementability and relevance. 

 

6.1.2 Test Criteria 

To ensure testability/auditability, test criteria shall be established. These criteria provide a technical 
foundation for the adapted specific requirements, functioning as strict conditions that serve as the basis for 
evaluating the system. They outline the criteria that shall be met by the system, either directly or through 
relevant documentation or processes, to fulfil the requirement. 

Figure 13: Generic Requirement specification to Specific Requirements. 

Figure 14: Test Criteria for a Specific Requirement. 
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A requirement consists of at least one criterion but can include multiple criteria that need to be satisfied as 
illustrated inFigure 14. Generally, test criteria can be classified into two different directions: 

Quantitative Criteria: These involve specific threshold values for measurable parameters related to the 
system’s functionality, reliability, usability, performance, and security. Typically, the verification of these 
thresholds is done through empirical testing. 

Qualitative Criteria: These criteria are not measurable or expressible in numbers. This applies particularly to 
completeness verification, where it shall be ensured that all necessary components for proper operation or 
evaluation are in place (e.g., through document review). Additionally, qualitative criteria may require expert 
assessment in specific domains. 

In practice, a combination of both quantitative and qualitative criteria is often used to evaluate a requirement. 
When it is not possible to define quantitative criteria (due to a lack of regulatory or normative thresholds or 
empirical data), or if they are only partially formulated, a mix of criteria is employed. For example, an 
adversarial attack might be tested by selecting a particular attack type, defining a realistic effort that an 
attacker might make, and testing the system’s security against it. While the attack’s impact can be measured 
empirically, estimating the effort, and selecting the attack method relies, at least partially, on qualitative 
expert judgment. The same applies to setting specific thresholds, where risks shall be assessed, and prior 
experience or expert insights are factored in. 

Alongside the test criteria, a test approach shall be developed, including corresponding test scenarios. These 
test scenarios shall be designed so that their results can be assessed against the defined criteria, leading to a 
judgment on whether the system meets the specific requirements or fails to do so. More information on test 
scenarios and testing in general can be found in Section 6.2. 

To implement the test criteria and the corresponding test scenarios on a technical level, several parameters 
shall be defined. These parameters depend on the formulation of the test criteria and the specific requirement, 
including coverage of the use case and AI system. Most parameters definitions concern both the qualitative 
and quantitative aspects of a criterion and typically involve: 

• Defining the subject for completeness verification. 
• Establishing metrics for measurement and evaluation. 
• Setting thresholds in line with the defined metrics. 
• Determining the content, type, and sizes of test datasets, i.e., a minimum number of data samples to 

ensure statistical relevance of the test results. 
• Including additional elements based on the type and formulation of the test criteria. 

The definition of these parameters may be derived from relevant standards, norms, regulations or technical 
guidelines. If such sources are unavailable, empirical data, domain expertise, and best practices should be used 
to guide the definition process. This includes the use of results from comparable use cases and systems, and 
corresponding security considerations. It is recommended to provide a clear justification of why the specific 
parameter value was chosen including the basis on which the decision was made, e.g., by stating statistical 
proof or reference to proven test criteria of similar system evaluations. In the following, recommended 
guidelines and sources are described how to define such parameters and thresholds. 

6.1.3 Recommended sources for Definition of Values and Thresholds for 
Specific Requirements and their Test Criteria  

Suggested sources to support the definition process may include input and alignment from real-world 
feedback, simulations (Hardware-in-the-Loop/Software-in-the-Loop), and benchmarks of human 
performance. In detail:  

 

1. Natural and Adversarial Perturbations  
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Possible Aspects for Threshold Definition:   

Perturbation Magnitude: Rather than providing a fixed (precise) threshold for perturbation 
magnitude (e.g., L2-norm or L-infinity norm), the acceptable limits must be derived from domain-
specific testing. For example, the maximum distortion of the input data, which can be tolerated while 
maintaining a specified accuracy (e.g., 94%) needs to be determined based on empirical tests against 
known adversarial strategies.  

 

Adversarial Success Rate: A precise adversarial success rate threshold is impractical in a generic 
approach. Instead, thresholds should be defined based on the system's deployment context and 
adversarial threat models (e.g. black-box scenario with limited attempts etc.).  For example, an 
acceptable success rate might be defined as allowing no more than 5% of attacks to lead to incorrect 
predictions, depending on the criticality of the application.  

 

Human Perceptibility: Thresholds related to adversarial robustness may be aligned with human 
recognition benchmarks. For example, the system should maintain a certain robustness against 
adversarial perturbations (e.g. as patch-based attacks) that are clearly identifiable as suspicious 
manipulation by a specific group of human observers. 

 

2. Feedback from Real-World Evaluation  

Possible Aspects for Threshold Definition:  

Error/Failure Rates: Instead of setting fixed error/failure rates, thresholds should be dynamically or 
iteratively set based on real-world operational feedback. For example, acceptable error rates for 
pedestrian detection or traffic sign recognition should be based on the system's deployment in diverse 
real-world conditions. The data gathered from these real-world scenarios may (iteratively) adjust the 
acceptable level of system performance under real-world constraints.  

 

Environmental Variability: In some cases, the environment (e.g., lighting, contrast, weather) may 
impact performance, making fixed thresholds unfeasible. Instead, thresholds for accuracy or 
reliability under specific conditions (e.g., low-light environments) can be derived from operational 
data and feedback over time, rather than being defined and fixed generically.  

 

3. HIL/SIL Testing  

Possible Aspects for Threshold Definition:  

Simulated Environment Accuracy: Possible thresholds related to system accuracy during simulations 
may be set initially and may be adjusted based on testing results in simulations that mimic real-world 
conditions. For example, minimum acceptable accuracy levels in a traffic simulation can be set based 
on HIL/SIL test results.  

 

Robustness under Simulated Stress: The threshold for system stability during simulated edge cases (e.g., 
high traffic density, sudden braking scenarios) should be determined through repeated tests in 
simulation environments, rather than by applying fixed, generic values.  

 

4. Human Performance Benchmarks  
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Possible Aspects for Threshold Definition:  

Human Error Rates: Instead of applying a fixed human error rate as a threshold, human performance 
data from relevant tasks can be used as a baseline or initial guidance. For instance, the system should 
aim to match or exceed human accuracy in traffic sign recognition, but specific thresholds must be 
defined based on human performance studies in similar contexts.  

 

Comparability to Human Judgment: Possible thresholds for AI systems may aim to approach human-
level decision-making in complex scenarios (e.g., pedestrian recognition), but this should be 
quantified in specific scenarios relevant to the system's operation, rather than through a “one-size-
fits-all” approach.  

 

5. Setting Initial Values and Thresholds Based on Evaluator’s Choice and Experience  

Possible Aspects for Threshold Definition:   

Expert Judgment: Evaluators can set provisional or initial values using industry knowledge, regulatory 
standards, or domain experience to begin the evaluation process. These initial thresholds may provide 
a starting point, which can be refined as testing progresses.  

 

Applicability Testing: After setting an initial threshold, evaluators can conduct pilot tests to assess if 
the chosen values are reasonable and relevant. For example, an initial threshold for error rate could 
be established based on industry standards or domain related experience and then adjusted as more 
system-specific data becomes available.  

 

Iterative Refinement: Initial values should be reviewed and modified as insights emerge. Evaluators 
should justify adjustments based on test results, industry developments, and feedback from ongoing 
evaluations. These iterative cycles may be repeated until a satisfactory level of reliability or other 
benchmark is achieved. 

 

6.1.4 Recommended Guidance for Setup of the Test-Criteria  

Once a specific requirement is defined, the next step is to determine precise values and thresholds for the 
associated test criteria. These values and thresholds serve as benchmarks to assess the requirement (e.g. 
quantifiable resilience against identified vulnerabilities etc.). In the following, a structured process is 
suggested that provides guidance on selecting relevant sources and parametrizing values and thresholds. 

The table below addresses the most important aspects of setting precise, context-specific values and 
thresholds for test-criteria.  Key tasks include: translating high-level requirements (e.g., robustness against 
perturbations) into measurable metrics, selecting data sources that reflect real-world and simulation 
conditions, aligning thresholds and values through empirical tests. This process is considered as a guidance 
to support a structural step-by-step approach. 

Figure 15: Final stage of the specification process including definition of precise Test-Criteria 
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No. Step Task Description 

1 
Parameterize 

the specific 
requirement 

Contextualize for use-case 
and operational domain 

Define the parameters of the specific requirement, e.g. 
(adversarial) noise level, lightning conditions, no. of 
malicious attempts, success rate etc. 

2 
Identify and 

Select relevant 
sources 

Choose relevant sources and 
metrics applicable to the 

specific requirement and the 
associated parameters 

Select controllable benchmarks and parameters of 
relevant source. E.g. for Adversarial Perturbations: 
Epsilon, Patch Size, Iterations, Success Rate, Step Size, 
Vector Norm Constraint HIL/SIL Testing: Latency, 
Sensor accuracy, Systems’ noise, error rates etc. 
Feedback from real world evaluation: Error rates, 
response times, camera noise levels etc. Human 
Performance: Error rate baseline of a group of people 
(e.g. from trials) Evaluators Choice: Domain-specific 
benchmarks from current standards, initial values form 
pilot testing, industry averages etc. 

3 Setup 
Define precise, measurable 
metrics, align the metrics 

across sources 

Setup initial values and thresholds of the parameters, 
ensuring alignment across other sources. E.g. define the 
adversarial perturbation noise level with an Epsilon 
value of 0.2 or a Patch Size covering 60% of the input, 
aiming for an error rate comparable to human 
performance or within the limits of human 
interpretability. An additional source to consider could 
be input from domain experts or domain-specific 
standards. 

4 
Feedback and 
Refinement 

Testing the Criteria, gathering 
feedback 

Conduct (iterative) evaluations of the test-criteria and 
the defined thresholds and values across actual test (e.g. 
real-world within adversarial scenarios,) and gathering 
feedback on AI-Systems performance. Adjust the 
parameters accordingly.  

 

The illustration above shows the basic process of specifying a generic requirement by precise values. This 
process involves parametrization, setting up specific thresholds and value, receiving feedback, and refining 
based on outcomes gathered from various sources such as evaluations, research, or regulatory and authority 
feedback. It has to be noted, that this feedback may also affect the prior stages including the generic 
requirement itself. E.g. the feedback might necessitate adjustments or alignments to the generic and/or 

Figure 16: Recommended process of specifying generic requirements through parametrization, precise values and 
feedback. 
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specific requirements, not just the precise parameter values. However, for the sake of clarity, the focus here is 
limited to the impact on the (precise) specific requirement. 

 

6.1.5 Challenges within the Process of Defining precise Values and 
Thresholds   

The suggested sources can be seen as supporting recommendation for the process of defining values and 
thresholds. However, setting fixed (precise) values and thresholds (e.g. for the amount of (adversarial) noise, 
patch-size, acceptable robustness etc.) for testing AI-based systems is highly challenging and often unfeasible 
due to several critical factors:  

Huge Diversity and Variety of Applications and Systems: AI-based systems differ significantly in terms of 
architecture (e.g., deep neural networks, convolutional neural networks, decision trees, etc.), functionality, 
and deployment environments (superior system, system interaction, etc.). A fixed threshold that works for 
one system may not be applicable to another. Each AI use case has unique requirements that demand tailored 
testing criteria and iterations.  

 

Dynamic Real-World Environments: AI systems deployed in real-world settings face constantly changing 
conditions — such as lighting, weather, traffic patterns, or user interactions. Fixed thresholds for every 
condition or system are not flexible enough to account for this variability. For instance, an AI for autonomous 
driving may need different performance thresholds for daylight versus night driving or clear versus rainy 
weather.  

 

High variety of Input Data: AI models process a wide range of different input data. Even for the same task 
(e.g., specific image recognition), variations across multiple dimensions —such as lighting, color, contrast, and 
viewing angles— can make it impractical to define fixed (precise) thresholds that are universally applicable. 
For example, pedestrian detection accuracy in images may vary widely based on background, camera angle, 
and distance, sensor drift, etc.  

 

Adversarial/Malicious Threats: AI systems are vulnerable to adversarial attacks, where small, often 
undetectable changes to input data can drastically alter system behavior. Fixed thresholds for robustness 
against adversarial perturbations may be inadequate because attack methods evolve, and each system's 
vulnerabilities may vary depending on its specific architecture and use case.  

 

Human Performance Variability: When comparing AI systems to human performance (e.g., traffic sign 
recognition or pedestrian detection), human abilities vary depending on context, such as fatigue, attention, 
(driving) experience or stress. Therefore, setting a fixed threshold for AI performance based on human 
benchmarks may be unreliable, as human performance itself is not constant across different scenarios and 
domains.  

 

6.1.6 Need of iterations and refining of the criteria  

As discussed in Section 6.2.3, the specific requirements and their corresponding test criteria shall also be 
evaluated through real-world testing. Even when pre-assessments (e.g. in simulation or theory) suggested the 
applicability or success of certain test criteria, real-world testing could lead to unexpected or opposite results 
compared to e.g. simulation. For example, a system that appeared theoretically vulnerable or susceptible in 
simulations might remain resilient when subjected to actual testing. Therefore, it is essential to refine and 
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adjust the test criteria based on real-world feedback. This process should be seen as an iterative approach, 
allowing for stepwise adjustment and improvement of the specific criteria. 

 

Prerequisites and Recommendation Summary 

For the stated process of specifying the generic requirements for the existing use case and the system under 
evaluation as well as the establishment of the testing criteria, the following work products shall be available: 

• HARA process report, e.g., from ISO 26262:2018 for automotive or ISO 25119:2018 for agriculture and 
forestry 

• Vulnerability analysis report 
• Information about the use case including planned core objective/target functionality of the system 
• (AI) System and system integration (or system interaction with other systems) specification and 

documentation 
• Information about the operational environment 
• Relevant regulatory and standardization records 

These resources shall be used as the basis for the following steps: 

• Generic, high-level requirements shall be examined and specified into specific requirements tailored 
to the existing use case and the AI system under test. 

• For each requirement one or more test criteria for determining compliance to or failure of the specific 
requirement shall be clearly defined, along with an accompanying testing approach (see Section 6.2) 
for their evaluation. The conditions for meeting or failing the criteria shall be unambiguous. 

• When specifying the criteria, parameters to be defined, especially the conditions for passing the 
criterion, e.g., thresholds, metrics, test datasets shall be justified. This may be done by citing the 
respective standards or regulatory work or by providing concrete evidence that the chosen 
parameters are suitable for the security case. The following shall be considered when formulating the 
test criteria: 

o Characteristics of datasets used in the evaluation shall be clearly defined, including dataset 
size (with a minimum size for statistical relevancy) and relevant topics or contexts to cover 
semantically by the datasets. Thereby, especially the dataset size shall be justified by statistical 
argumentation. The selection or creation process shall ensure representativeness of the 
operational design domain. 

o Methods, tools, and algorithms for testing and evaluating the requirements shall be 
identified, e.g., specifying adversarial attacks to test system robustness against threats. In case 
of the adversarial attacks, the results from vulnerability analysis shall be consulted for the 
selection of suitable attacks. Thereby, it shall be ensured that the attack represents actual state 
of the art. Furthermore, it shall be assessed how much effort an attacker can realistically 
invest in executing the particular attack and the corresponding test scenario shall be adapted 
accordingly. 

o Suitable metrics for measurement and corresponding thresholds shall be chosen to be able to 
evaluate test criteria respectively the goal of the specific requirement. Again, if not stated by 
regulation or standards, domain experts shall be consulted and proven metrics and 
thresholds from the domain should be used. All defined parameters need a clear justification 
for selection. 

 



6 Generalized Audit Approach 

Bundesamt für Sicherheit in der Informationstechnik 38 

6.2 Testing Activities 

After the definition of the evaluation requirements, their practical evaluation shall be conducted. In the 
following, an iterative testing approach (see Figure 17) is proposed for evaluating the requirements and the 
defined test criteria in simulation, in a transitional phase between digital world and real world and finally in 
reality. 

The respective phases all have a different focus as can be seen in Figure 18. Simulation to a certain degree lacks 
the connection to reality. The extent of controllability during simulation and the number of implementable 
test scenarios in the SIL testing are characteristic for this stage. The transition phase harbors compromises in 
all three categories and does not stand out in any category, but connects the other two concise phases. Real-
world testing is relatively slow and the least controllable testing approach, but due to the realistic test 
scenarios, it is the most crucial phase out of the three that determines whether the test criteria are met. 

 

Figure 17: Requirement specification and subsequent testing approach for the requirement evaluation. 

Figure 18: Categorization of testing phases. 
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6.2.1 Simulation Testing 

Simulation-based testing is an essential approach for evaluating AI in a fully digital environment. As a SIL 
(Software-in-the-loop) system, it provides a controlled and flexible method to test system behavior under a 
wide range of scenarios, from routine to extreme cases, without the risks and constraints of real-world 
deployment. 

The great advantage of the SIL testing is the number of test scenarios that can be tested in a certain amount 
of time. In real-world testing, preparing, and conducting test scenarios requires much more effort and time 
and is also associated with risks, e.g. when conducting driving tests on streets. Simulations enable rapid, 
repeatable evaluations of AI models in virtual settings that mimic real-world environments and conditions 
to a certain degree, ensuring that systems can be tested safely before real-world deployment. 

When selecting test data for simulation testing, as shown in Figure 19, the corresponding specifications from 
the test criteria and for the system’s ODD shall be adhered to. In order to provide a large and diverse data 
sources for simulation, precompiled datasets, e.g., open source, may be used as long as they appropriately 
represent the operational design domain and in particular the use case at hand. If these data sources are not 
sufficient in terms of quantity or quality, own datasets shall be compiled. Here, again existing precompiled 
datasets may be integrated. Both, digital real-world and synthetic data may be used for the datasets. If 
adequate benchmark datasets for the present use case and relevancy for the test criteria (e.g., featuring the 
defined metrics) exist, these shall be included in the testing approach. In order to ensure comparability 
respectively validity of the results, benchmark datasets shall not be modified. Further testing advances shall 
complement the benchmark testing. 

The used datasets, especially when using precompiled data, shall be analyzed thoroughly regarding malicious 
samples, i.e. data poisoning. Furthermore, the representativeness and domain coverage of data used in the 
simulation shall be ensured. The data fed into the AI system shall reflect the variability and complexity of 
real-world inputs. If the simulation data is too limited or unrealistic, it may not reveal critical system 
weaknesses. Testing should use both typical and out-of-distribution data to ensure that the AI system can 
generalize its performance beyond the specific conditions under which it was trained. 

Figure 19: Datasets selection process. 
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When conducting simulation testing, another critical factor is the realism of the simulation environment. The 
environment shall be designed to accurately reflect the conditions in which the AI system will operate. This 
includes modelling or selecting the simulation data considering aspects like sensor data, noise, delays, and 
physical constraints that the system may encounter during operation. The complexities of the ODD shall be 
simulated as closely as possible and be integrated into the testing scenarios. Ambiguities or gaps in this regard 
shall be documented and investigated in the following testing phases, where real-world conditions come into 
play. This ensures that the test scenarios in simulation are syntactically close to the test scenarios in the later 
phases. A detailed justification for the selected test datasets shall be given with an argumentation on why the 
data is representative for the ODD. 

In addition, the simulation shall incorporate robust validation tools. These tools shall enable detailed tracking 
and analysis of the system's performance during the simulation. Thereby, KPIs and metrics relevant for the 
test criteria shall be measured, providing quantitative feedback on the system behavior. The selected tools 
shall be justified. 

The ability to reproduce tests is critical for performance consistency, allowing repeated trials under identical 
conditions to compare results and validate improvements. Therefore, the test results and corresponding 
setups and settings shall be documented. Any critical or anomalous results from the simulation phase shall 
be documented and prepared for further examination in transition and real-world testing. 

Prerequisites and Recommendation Summary 

For the simulation phase including the selection of appropriate testing data, the following work products shall 
be available: 

• Use case description including ODD description 
• Test criteria specifications, i.e., dataset specifications, defined metrics, defined thresholds, etc. 

These resources shall be used as the basis for the following steps: 

• Documentation: 
o General documentation shall be created including test plans, records of test results and setups 

for reproducibility. 
• Test data: 

o Regardless of the origin, the selected test data shall adhere to the specifications made in the 
test criteria. Furthermore, the test data shall be representative of the system’s ODD and shall 
be analyzed regarding data poisoning. A justification on ODD coverage of the datasets shall 
be given and corresponding identified ambiguities, that are not solvable in simulation shall 
be documented and assigned to the next testing phases. 

o If relevant benchmark sets are available, these shall be used for testing in an unmodified state. 
Additional testing shall be conducted. 

• Adequate tools for tracking and measuring the test scenario results shall be identified, justified and 
used for testing. 

 

6.2.2 Transition Testing 

To bridge the gap between the controlled, fully digital world of simulation and the complexity and 
unpredictability of real-world testing—where factors such as component tolerances and intricacies may limit 
accurate simulation—an intermediate stage should be included in the evaluation approach. Transition testing 
connects purely digital simulation with real-world conditions, allowing for a more realistic evaluation of AI 
systems while maintaining many of the advantages of simulation. In transition testing, a Hardware-in-the-
loop (HIL) system shall be used to introduce the physical aspects of the AI system and its deployment in an 
environment similar to the ODD. The HIL system shall reflect the final hardware for the deployment of the 
AI system. Digital test samples from simulation are transferred or displayed via devices like screens or 
projectors to the HIL. The testing approach features the AI system in combination with its actual hardware 
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components under controlled conditions. This allows for a hardware-level evaluation of the AI system while 
still retaining many of the flexibility and advantages of digital testing, including the ability to rapidly iterate 
and test a wide range of scenarios. 

As in simulation testing, a digital test set shall be prepared mimicking real-world stimuli. In general, the test 
set consists of data samples that were already tested in simulation. Since transition testing is slower than 
simulation, only a subset of the digital test data from the simulation may be tested. This means that testing 
shall be limited to the critical respectively conspicuous test cases from the simulation phase. These may be 
supplemented with additional test cases, which may be particularly relevant for the HIL system or the 
interaction between the embedded AI system, hardware components and the realistic conditions of the test 
environment. 

The presentation of the testing samples to the embedded system’s sensors shall be conducted via electronical 
presentation devices that are suitable for displaying digital data.  

To ensure that the test samples are received as specified by the system, the presentation devices shall be 
matched to the receiving sensors. In this respect, especially the output frequency of the presentation device 
and the frame rate of the target sensors shall be synchronized. Another aspect that shall be taken into account 
is the color representation of the selected media and whether these allow an accurate representation of the 
digital test data in the real world. In addition, the test environment shall be taken into account, which can 
influence the representation of the digital samples by the presentation device or the recording of the sensors. 
This typically involves local lighting conditions such as direction of incidence and intensity of light, but also 
general weather conditions such as precipitation. These factors shall be as controlled as possible and 
corresponding documentation of test cases shall include a detailed description for reproducibility of the test 
scenarios. 

As mentioned, the throughput speed of testing samples in this phase will be lower than in pure simulation 
due to the added complexity of the transfer of digital samples to the receiving sensors of the HIL. For efficient 
testing of a wide array of scenarios, the testing pipeline (varying between test scenarios) and the time required 
to reset the hardware for each test case shall be optimized for maximal throughput as they are the determining 
factors. 

For conspicuous and critical scenarios or effects, test cases for real-world testing shall be developed to 
examine these in more detail. If there are findings that have not yet been considered in simulation testing, 
these shall be investigated again as a test series in simulation. 

Prerequisites and Recommendation Summary 

Within the transition testing phase including the selection of appropriate testing data, the following work 
products shall be available: 

• Use case description including ODD description 
• Test criteria specifications, i.e., dataset specifications, defined metrics, defined thresholds, etc. 
• Hardware specifications, i.e. framerates, performance, latency 
• Anomalous results from simulation testing 

These resources shall be used as the basis for the following steps: 

• Testing Pipeline and Hardware-in-the-Loop (HIL) 
o The HIL system shall be equivalent to the real-world hardware environment. This integration 

allows the AI system to be tested in a near-realistic setup, bringing it closer to actual 
deployment conditions. 

o Testing pipeline and changing test scenarios shall be aligned with the required HIL resets to 
maximize throughput. 

• Digital Test Set with Critical Scenarios 
o A digital test set containing the findings from simulation testing supplemented by additional 

test scenarios addressing the inclusion of the HIL system shall be composed. 
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• Presentation Devices and Test Environment: 
o Presentation devices, such as beamers or screens, shall be aligned with the specific 

characteristics of the AI system’s sensors to ensure accurate input delivery. This is crucial for 
maintaining consistency in how test cases are presented and evaluated. 

o The alignment of presentation devices and sensors shall be regularly validated to avoid 
inaccuracies in sensor readings, e.g., due to changing environmental conditions. 

o The test environment’s conditions shall be controlled and documented. 
• Transition Evaluation Results 

o Test scenarios identified as problematic or anomalous shall be prepared for re-evaluation in 
simulation (if not tested before or tested insufficiently) and for further evaluation during 
real-world testing. 

6.2.3 Real-World Testing 

Real-world testing represents the final and most crucial phase in the evaluation of an AI system, validating its 
performance and robustness in actual operating conditions. This phase is designed to confirm that the system 
functions as expected when exposed to the complexities and variability of the real world, beyond the 
controlled confines of simulation and transition testing. By testing the AI system in its intended environment 
respectively an environment resembling the ODD, real-world testing provides a comprehensive evaluation 
of its reliability, robustness, and readiness for deployment. 

The system shall be set up in a physical environment that closely mirrors the conditions it will face in 
operation. In the case of ADAS or AD system, this may be on a dedicated test track or under real driving 
conditions on the street. As in transition testing, the final system including the embedded AI system and 
additional hardware components such as sensors or actuators shall be prepared. The system shall be tested 
with real-time inputs, i.e. the test scenarios represent dynamic traffic situations in real time, in contrast to the 
digital still images or short sequences as in the previous phases. 

As mentioned in transition testing, real-world conditions means that the system is exposed to a wide range 
of uncontrolled or hard to control variables, such as fluctuating lighting, weather conditions, and other 
environmental factors. On the one hand, this poses a challenge for reproducibility of the test scenarios. 
Therefore, these conditions shall be documented. On the other hand, it is precisely the changes of the test 
conditions that can uncover issues that were not previously considered (as their full replication is difficult in 
simulation or transition testing) and so these elements shall be identified and deliberately included in the 
real-world testing approach. For example, test series for a certain scenario shall (if relevant) include tests 
during all different weather conditions (relevant for the use-case) such as rain, snow, cloudy weather, and 
sunshine, but also tests that are conducted e.g. during daytime and nighttime. For instance, a system might 
perform well in ideal conditions but fail to respond correctly in situations with low light. Furthermore, tests 
with a varying number of traffic participants shall be considered such as complex driving scenarios in 
crowded city streets. The system's response to these conditions shall be carefully monitored, with extensive 
logging and analysis conducted throughout the process. This ensures that any deviations from expected 
behavior are captured and can be traced back to specific operational contexts or inputs. 

The logistical complexity and cost of real-world testing are significant challenges. It requires substantial 
preparation and personnel, including arranging the test environment, obtaining permissions (in cases like 
road tests for autonomous vehicles), setting up monitoring systems, and collecting extensive data. Because of 
these costs, real-world testing typically follows a highly structured approach. The testing shall focus on 
replicating the critical test cases identified in the earlier stages of simulation and transition testing. 
Furthermore, scenarios that could not be fully simulated digitally, such as hardware failure modes or realistic 
environmental changes, shall be included. 

Ultimately, real-world testing provides the most accurate assessment of the system’s readiness for 
deployment, offering a critical audit of whether the AI system can operate safely and effectively in its intended 
real-world environment. The results of this phase shall be the main criteria for evaluation of the specific 
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requirements. Nevertheless, in many cases, findings or results from HIL/SIL testing cannot be fully recreated 
in real-world environments due to practical, time, technological, or cost-related limitations. E.g. only a subset 
of successfully conducted adversarial patch attacks can be validated in real-world. In such cases, the findings 
from HIL/SIL testing should undergo a risk assessment by e.g. domain experts and may supported by 
techniques for “explainable AI” to enhance the risk assessment. If further risk assessment provides an 
explanation for the discrepancies, it may be concluded that this subset of simulation results is not relevant to 
real-world scenarios. Conversely, if no additional insights can be obtained, it should be assumed that all 
findings from HIL/SIL testing are valid and can occur within real-world conditions. However, every finding 
shall be documented and described in detail including recommendations to pay special attention in 
subsequent evaluations or iterations.  

Prerequisites and Recommendation Summary 

For the real-world testing phase including the selection of appropriate testing data, the following work 
products shall be available: 

• Use case description including ODD description 
• Test criteria specifications, i.e., dataset specifications, defined metrics, defined thresholds, etc. 
• Hardware specifications, i.e. framerates, performance, latency 
• Anomalous results from simulation and transition testing 

These resources shall be used as the basis for the following steps: 

• Environment Setup 
o The real-world testing environment shall be set up to closely mimic the AI system's intended 

ODD. 
• Hardware-in-the-Loop (HIL) 

o For real-world testing, the final deployed system shall be utilized including necessary 
hardware components, such as sensors, actuators, and the embedded AI system. 

• Test Scenarios 
o The scenarios shall be designed as complex and dynamic experiments in form of real-time 

input that is fed to the system. 
o The scenarios tested during real-world testing shall be built on the critical or anomalous 

evaluation results from simulation and transition testing. Real-world testing should replicate 
these test cases as closely as possible, while also introducing new cases that were previously 
impractical or impossible to simulate. For this, changing, hard to control conditions shall be 
identified and structurally integrated into the testing. The corresponding test scenarios and 
results shall be logged with the occurring conditions. 

o The results from the real-world testing shall be the main source for the evaluation of the 
specific requirements. 

o If there are findings in real-world testing, that were not investigated in simulation or 
transition testing, novel test series in the respective phases shall be conducted to fully 
examine the issue. 
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Appendix A.1 Exemplary Evaluation of AI Requirements 
based on a Use Case 
In this annex, the practical application of the previously introduced audit approach shall be demonstrated, 
utilizing a real-world automotive use case to evaluate an exemplary AI requirement. The process begins with 
the derivation of generic requirements, as outlined in Section 5.2, and their refinement into specific, use case-
related requirements, as detailed in Section 6.1. Following the specification, concrete test criteria are 
developed to evaluate the requirement. A test strategy is then outlined, incorporating the introduced audit 
approach including simulation, transitional, and real-world testing phases, as explained in Section 6.2. These 
phases are designed to assess the AI system’s compliance with the defined criteria. 

The focus of this chapter is to demonstrate the practical feasibility of translating high-level AI requirements 
into technical language and evaluating them systematically. Rather than prescribing fixed thresholds, the 
emphasis is on the iterative process to identify effective methods and means for requirement evaluation. 

 

Use Case Introduction: Road User Detection (RUD) System 

For the demonstration, a vision-based system for Road User Detection (RUD) was chosen as a representative 
use case from the automotive domain. The system employs a camera for the identification of static and 
dynamic road users. The system's output is intended for use in driver assistance (ADAS) functionalities or 
automated driving (AD) components. The focus is limited to the perception of road users, serving as a 
foundational use case for various applications such as automated emergency braking and blind spot 
detection. No assumptions are made regarding the activation of actuators or specific system functionalities 
beyond perception. 

The RUD system relies exclusively on an RGB camera positioned to capture the vehicle's forward direction. 
The input images are processed by an AI model for object detection. The output from the detector consists of 
a classified road user, a 2D bounding box, and an associated probability score. 

Unlike comprehensive RUD systems that typically integrate additional sensors, such as RADAR or LIDAR, to 
provide redundancy and improve performance in challenging environments, this use case focuses solely on 
camera-based perception. While real-world systems often incorporate these additional sensors, some 
camera-only perception systems are employed by major manufacturers and are utilized in ADAS due to cost 
considerations. They rely on the strength of AI-systems to make the most out of limited sensor capabilities. 

 

System Level Requirements: 

System-level requirements are high-level specifications that define the overall functionalities, performance, 
and safety criteria a system must meet. They are typically derived from standards, regulations and best-
practices, and serve as a mean for their integration in the system design and development. An example of 
such a high-level system requirement are safety goals for the system in accordance with ISO 26262. For the 
RUD system, critical safety goals are defined, such as the “correct detection of a pedestrian” and the “absence 
of false pedestrian detections.” While these are primary objectives for this demonstration, they represent a 
selection from a broader set of potential safety goals for the system. 

In order to achieve the safety goals, these high-level objectives are transformed into concrete requirements, 
for example, especially targeting the AI system. The generic requirements are not yet technical, but are a first 
step in the direction of practical application and evaluation. 

 

 

Generic Requirement: Robustness 
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Generic requirements for AI systems are typically also derived from standards, regulatory frameworks, and 
industry best practices respectively their (high-level) requirements as stated. The selection of generic 
requirements depends on the purpose and objectives of the evaluation, which in many cases is driven by 
regulatory compliance needs or specific safety and security concerns. In this case, the safety goals “correct 
detection of a pedestrian” and “no false detection of a pedestrian” shall be covered. For both objectives, a 
secure functionality without the possibility of a successful manipulation by an attacker is mandatory. 

Therefore, for the purposes of this demonstration, a requirement addressing the security of the AI system 
has been selected. 

I
D 

Description Life Cycle Categories Category 

1
0 

The system shall be robust against relevant AI-
related threats. 

Verification & Validation, Operation & 
Monitoring 

Robustness 

Prerequisites: Specification and Test Criteria 

Here, the essential prerequisites are outlined needed to specify the generic requirement and develop the 
associated test criteria and test approach. 

Note: Only the necessary information relevant to the exemplary requirement and its testing criteria is 
presented. 

 

Information about the use case/(AI) system specification and documentation: 

As stated above. 

 

Excerpt from HARA process report: 

In the context of the introduced Road User Detection (RUD) system, the system output is designed to be 
utilized by downstream Advanced Driver Assistance Systems (ADAS). Consequently, the RUD system may 
indirectly exert control over vehicle actions through its interaction with the ADAS. The influence of the 
ADAS, in conjunction with the RUD system, is conditional and only occurs when specific predefined 
triggering events take place. For instance, in the event of a critical detection by the RUD system, the ADAS 
may intervene to execute vehicle control functions.  

The operation of the RUD system, particularly when integrated with an ADAS, can give rise to several 
potentially hazardous situations. These hazards are predominantly related to the system's capability to detect, 
classify, or fail to detect road users accurately. The following scenarios outline key risks associated with the 
system’s operation: 

• False detection of a non-existent road user: This occurs when the system erroneously detects objects 
or individuals that do not exist in reality. For example, the system might mistakenly identify figures 
depicted on a roadside billboard as actual pedestrians. Such false detections can create hazardous 
driving conditions by prompting unnecessary or inappropriate vehicle responses that could 
jeopardize safety. 

• False classification of a road user: In this case, the system incorrectly classifies the type or nature of 
a detected road user. For instance, a cyclist wearing a raincoat might be misclassified as a motor 
vehicle. Such misclassifications can lead to inappropriate decision-making by the ADAS, resulting in 
dangerous driving behavior, as the system may overestimate or underestimate the required vehicle 
response. 

• Non-detection of a road user: A critical safety risk arises when the system fails to detect a legitimate 
road user, such as a pedestrian crossing the road. Non-detection of a road user could lead to the 
vehicle continuing its course without necessary intervention, posing a significant risk of collision or 
injury. 
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To ensure safety and reliability, a thorough risk analysis will assess the likelihood and impact of these hazards. 
The risk classification is determined using the ASIL (Automotive Safety Integrity Level) risk classification 
matrix. This matrix considers the severity of injuries, exposure to hazards, and the controllability of hazardous 
situations. For instance, a false classification or non-detection of a road user could result in life-threatening 
injuries, depending on the ADAS system and driving conditions. However, the severity of falsely detecting a 
non-existent road user is lower, as the ADAS typically mitigates risks by minimizing the impact through 
actions like emergency braking. 

The exposure to hazards is rated as "Medium," given that failures can occur naturally in a well-designed 
system, but deliberate attacks, such as adversarial manipulation of camera input, increases the risk of 
exposure. Table 5 summarizes the risk classifications of the identified hazards. 

Table 5: Risk classification for the identified hazards of the RUD system. 

Hazard Severity Exposure Controllability ASIL 

False detection of a 
non-existent road user 

Severe and life-
threatening injuries, 
survival probable 

Medium Difficult, 
uncontrollable 

B 

False classification of a 
road user 

Life-threatening and 
fatal injuries 

Medium Difficult, 
uncontrollable 

C 

Non-detection of a road 
user 

Life-threatening and 
fatal injuries 

Medium Difficult, 
uncontrollable 

C 

 

Excerpt from vulnerability analysis report: 

It is assumed that unauthorized direct access to the system, its internals, and the communication signals is 
not possible due to corresponding security measures. Therefore, direct manipulation of software or digital 
data by an attacker is not in scope. Only indirect access over the system’s sensors is possible. That means, the 
only channel for an attack on the AI system is through the scenery that is captured by the image sensor. 

Information about the ODD: 

The operational environment of the described road user detection (RUD) system includes dynamic and static 
road conditions where the system must detect and classify vehicles, pedestrians, cyclists, and other road users. 
This environment features varying lighting conditions, weather scenarios (e.g., rain, fog, and glare), and 
complex traffic situations, such as intersections and crowded urban areas. The system is faced with 
obstructions and varying types of road users as well as unpredictable road user behavior. Additionally, the 
system must function under real-time constraints. 

 

Relevant regulatory and standardization records: 

Not applicable. 

 

Specific Requirement: Robustness against Adversarial Patches 

The generic requirements shall be tailored to the specific use case. While they are designed to apply broadly 
across various AD/ADAS systems (e.g., perception systems, traffic sign recognition), due to differences in data, 
complexity, and risk exposure, thresholds and test cases shall be customized for each individual use case. The 
specification shall be accompanied by a clear rationale to ensure auditability and effective communication 
among stakeholders. 

To specify the generic requirement, it is essential to identify relevant threat scenarios that the system may 
encounter. 
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Rationale: The vulnerability analysis indicates that direct access and manipulation of the system are 
not feasible. Consequently, the most practical attack vector is through the physical manipulation of 
the captured scenery. Adversarial patches represent the most realistic option for such attacks in real-
world settings. Numerous scientific studies have explored this topic, highlighting the efficiency of 
adversarial patches. 

These patches consist of coherent patterns that can be easily fabricated, e.g., painted or printed on a 
poster or clothing. Their portability allows them to be deployed and removed by a single person with 
relative ease. Additionally, depending on the design of the adversarial pattern, the patches can often 
remain inconspicuous, further enhancing their potential for malicious use. Therefore, the Generic 
Requirement 10 is specified into the use case-Specific Requirement 10.1 defined as follows: 

Note: If further attack methods and scenarios are relevant for the system under tests, then these shall be added 
in the specific requirement description. 

 

Formulation of Test Criteria: 

For the formulation of test criteria, especially the HARA process with the identified hazards and risks, the 
vulnerability analysis indicating the attack method, but also information about use case, the system and the 
operational environment is used. Furthermore, the feasibility of an attack and the attacker’s potential 
resources shall be estimated and incorporated into the criteria. 

Rationale: As all of the identified hazards are classified as ASIL B or ASIL C and the robustness topic 
plays a significant role in the security and safety of AI systems, all of the hazards shall be included in 
the test criteria. Table 6 shows the corresponding assignment of hazards and test criteria. 

Naturally, since an object detection use case is considered, the attack offers two variants. The 
adversarial patch can be placed upon the object to be detected or it can be placed somewhere in the 
background. This distinction automatically defines two separate test criteria. 

The attacker’s knowledge of and access to the system can vary between black-box (no internal 
information) and white-box (model internals are known). If the AI system respectively model is 
confidential, an attacker has only external access over provided interfaces. If the AI system or the 
product embedding the AI system is procurable, then the attacker has most likely some internal 
insight or even full white-box access. For demonstration purposes, both options are considered. Test 
Criterion 1 is defined assuming black-box access and Test Criterion 2 assumes white-box access of 
an attacker. 

In order to evaluate the passing of the criteria, a threshold and a minimum amount of test scenarios 
to be conducted shall be determined. It makes sense to adjust the passing threshold to the normal 
system performance in absence of an adversarial attack. A suitable number of test scenarios for 
statistical relevance is harder to determine. If no numerical requirements directly from regulation 
exist, domain experts and safety engineers shall be consulted that may set up an appropriate safety 
case. Furthermore, comparable evaluations featuring the same system or conducted in the same 
domain can be used as reference point. 

Table 6: Assignment of identified hazards to the test criteria. 

Hazard Test Criterion 1 Test Criterion 2 

False detection of a non-existent road user - X 
False classification of a road user X X 

ID Specific Requirement 

10.1 The system shall be robust against adversarial patches. 
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Hazard Test Criterion 1 Test Criterion 2 

Non-detection of a road user X X 
 

In consideration of the arguments presented, the test criteria are formulated as follows: 

Test Criterion 1: The system shall be robust, i.e. offer unchanged performance, when exposed to a series of 
black-box adversarial body patches. 

Test Criterion 2: The system shall be robust, i.e. offer unchanged performance, when exposed to a series of 
white-box adversarial background patches. 

Note: The unchanged performance refers to the system performance during unaltered, normal operating 
conditions, which is frequently evaluated in the course of other evaluation requirements. Thus, in the 
evaluation of this requirement ground truth tests are conducted corresponding to the test cases containing 
the adversarial attack. If deviations in the behavior of the AI system are detected, the findings are analyzed 
regarding their relevance and impact and a verdict is concluded. 

 

Preparation of General Testing Approach: 

For the testing approach, the nature of the formulated test criteria shall be considered. Furthermore, the 
threats considerations of the vulnerability analysis and the identified risks for the use case and the system 
from HARA process shall be included. 

The vulnerability analysis state that an attacker can only conduct attacks in front of the camera sensor as the 
rest of the system is secured by corresponding measures. In general, he can physically manipulate the scenery 
as he wants. As mentioned in the rationale of the requirement specification and defined in the test criteria, 
the most realistic approach is using patches or posters with adversarial patterns. As described in the rationale 
for the test criteria, for demonstration one test criterion was formulated considering white-box access of the 
attacker, while the other assumes only black-box access. In the white-box scenario, an attacker is able to craft 
targeted attacks on the system under evaluation. 

Therefore, the test scenarios for Test Criterion 1 shall be designed using adversarial patches crafted using 
black-box attacks or adversarial patches that were crafted for similar systems, i.e. transfer of adversarial 
attacks. Here, the patches shall be placed directly on road users with the goal of either prevention of their 
detection or misclassification as a false class. 

The test scenarios for Test Criterion 2 shall be designed using adversarial patches crafted using white-box 
attacks on the system, that are placed in the background of sceneries or images containing road users. The 
goal of the attack is again the prevention of detection or the misclassification. Another objective for the 
background patches is compelling false positive detections for non-existent road users. 

A research phase shall be conducted to identify suitable tools and methods, especially attack 
implementations. For each test criterion, appropriate, state-of-the-art adversarial attacks are selected. This 
example is restricted to one attack per test criterion. For the body patches, a GAN-based black-box attack is 
chosen. The GAN generates adversarial patches from real-world images that resemble natural-looking 
objects, making the attacks harder to detect. In the case of background patch scenarios, a white-box gradient-
based attack is utilized. This approach leverages knowledge of the model's gradients to craft highly specific 
adversarial patches targeting the system’s weaknesses. 

Note: In this practical evaluation, the focus is on the road user class of pedestrians. However, the presented 
procedures can also be applied to all other classes of the use case. 

 

Simulation Testing: 
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Datasets for testing are compiled in accordance with the specifications outlined in the test criteria. As part of 
this process, the defined adversarial attacks are used to generate patches, which are then applied to 
appropriate images. In the following, the relevant aspects for this process are introduced and a rationale for 
the decisions is given. 

The digitally created test scenarios for simulation consist of the following components:  

• Images of real-world or artificially created backgrounds 
• Images of real-world road users, such as pedestrians, either inserted into or already present in the 

original background image 
• Digital adversarial patches applied to these images 

For the corresponding data, open source datasets or proprietary data collections were used. 

Rationale: The selection of backgrounds and road user images for the datasets is aligned with the 
system's operational context. The chosen backgrounds, whether real-world or synthetic, were 
carefully selected to match the specified Operational Design Domain (ODD), ensuring that the testing 
environment reflects the system’s intended use. Additionally, real-world images were sourced from 
the actual test track that will be used during the transition and real-world testing phases. This 
approach facilitates a seamless transition between testing stages, ensuring a certain consistency even 
under changing environmental conditions. Furthermore, the road users inserted into the images were 
chosen to correspond with the system's predefined class descriptions, ensuring that the test scenarios 
are both relevant and representative of real-world usage. 

In the test setup, the placement and form of objects were carefully considered to ensure realistic and 
meaningful results. Persons were inserted into the images while taking the overall image semantics into 
account, ensuring that their orientation and positioning were appropriate for the scene. For Test Criterion 1, 
adversarial patches were placed roughly in the upper middle of the person’s bounding box, typically covering 
the torso while keeping other key features, such as the head and limbs, visible. In contrast, for Test Criterion 
2, the patches were randomly placed in the background of the images. The shape and size of the patches were 
configurable, based on the specific attack method used. A rectangular shape was chosen for the patches, with 
a realistic size relative to the inserted persons. 

Rationale: By considering the semantics of the image during the placement of persons, the scenarios 
created are more realistic, which helps to ensure a smooth transition of the test cases into subsequent 
phases of the audit process. The positioning of the patches was done carefully to avoid obscuring 
essential features necessary for person recognition. Placing the patches on the torso of a person 
reflects natural scenarios, such as someone holding a poster or wearing a T-shirt with a printed design. 
The rectangular shape of the patches makes them resemble posters, and their size was selected to 
avoid drawing excessive attention, unlike a patch as large as a billboard would. On the other hand, 
patches that are too small, while detectable in simulation, would be impractical to implement in real-
world scenarios. 

In the SIL implementation, the generated test scenarios were sequentially presented to the AI system, and the 
inference results were evaluated based on the available ground truth. In addition to the test dataset containing 
adversarial patches, a clean dataset was used as a baseline for the system's general performance on 
unmanipulated scenarios. This clean dataset contained the same test scenarios, but without the adversarial 
patches, allowing a direct comparison between the system's responses and enabling the identification of the 
actual influence of the attacks. 

For the evaluation, all test scenarios from the adversarial dataset that showed a deviation from the ground 
truth were identified. These results were then compared with the corresponding results from the clean 
dataset. An attack was deemed successful if the AI model correctly predicted the outcome for the 
corresponding sample in the clean dataset. Other cases, where discrepancies were found but not classified as 
successful attacks, were still flagged for further investigation in the next audit phase. 
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Successful attacks were manually analyzed, with particular attention given to the placement and size of the 
adversarial patches. Unrealistic proportions between patches and persons, as well as patches that 

inadvertently obscured key features of the depicted person due to semi-automatic placement, were also 
classified as anomalies. 

 

Simulation Verdict: A lot of anomalous test scenarios and test scenarios with successful attacks could be 
identified in simulation. Figure 20 presents four scenarios with successful attacks. On the upper images, 
additional non-existing persons were detected by the system. On the lower images, the patch deflects the 
detection of the depicted person. The background patch on the bottom right image additionally generates 
detections of non-existent persons. 

 

Transition Testing: 

A HIL system with an embedded AI system was provided for the testing. Two devices were selected to display 
the digital test scenarios: a daylight television and a projector. These presentation devices were installed in a 
realistic test track environment, with some of the backgrounds already integrated during the simulation 
phase. The projector was primarily used during low-light conditions, while the TV’s display settings were 
adjusted to maximize visibility and ensure realistic rendering of the test samples. The configuration of the 
display devices and the accuracy of the test sample depictions were regularly validated to account for varying 
lighting and weather conditions. 

Figure 20: Exemplary test results from simulation. On the left side for Test Criterion 1 and on the right side for Test 
Criterion 2. 
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For the critical scenarios, including anomalous results and successful attacks, both the adversarial patches and 
the underlying road user were extracted from the full images used in the simulation. These resulting digital 
samples were displayed via the presentation devices and captured by the HIL system. The system’s input and 
reaction were recorded for further analysis. Additionally, test scenarios without adversarial patches were also 
recorded to provide a basis for comparison, just as in the simulation phase. 

Rationale: The critical outcomes from the simulation were prepared for transition testing, with 
appropriate presentation devices selected and adjusted to match prevailing environmental 
conditions, particularly lighting. Testing took place on a dedicated track that closely simulated real-
world driving conditions, aligning with the specified ODD. 

Transition Testing Verdict: Significantly less critical test scenarios were detected compared to simulation. The 
proportion of anomalous results increased in comparison to successful attacks. This may be due to the 
changing environmental conditions. An example for this effect is depicted in Figure 21. The same presented 
test sample produces different results. 

 

Real-World Testing: 

In this testing phase, the final deployed system, embedded within a vehicle, was utilized. Critical outcomes 
from the transition testing were adapted for real-world testing. Physical printouts of the adversarial patches—
those that either resulted in successful attacks or produced anomalous results—were created. These patches 
were printed on various materials such as paper, acrylic glass, and PVC. The test scenarios involved individuals 
either holding or standing near the printouts on the test track, imitating the scenarios from the transition 
phase. Both dynamic tests, where the vehicle moved alongside the test setup, and static tests, with the vehicle 
stationary, were conducted to capture the system's performance. 

Rationale: The combination of dynamic and static test setups on the track closely mirrors real-world driving 
conditions as defined by the ODD. Printing the adversarial patches on different materials demonstrates the 
practicality of transferring the attacks into the real world, reflecting the methods and resources available to a 
potential attacker. 

The verdict is mainly based on the findings during real-world testing. 

 

Figure 21: Result discrepancy due to changing lighting 
conditions due to cloudiness and changing position of the sun. 
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Verdict Test Criterion 1: For the adversarial body patches, it was found that a number of printouts indeed 
hindered the detection of the holding person. Figure 22 depicts examples for failed test scenarios where the 
person was not detected or only partly detected due to the adversarial patch. Therefore, Test criterion 1 “The 
system shall be robust, i.e. offer unchanged performance, when exposed to a series of black-box adversarial 
body patches.” failed. 

 

Verdict Test Criterion 2: For the background patches, no attack success was noted. A number of test 
scenarios produced inconclusive test results as depicted in Figure 23. Here, the person was not respectively 
only partially detected. These effects only held for a few frames and were not consistent. Therefore, Test 
criterion 2 “The system shall be robust, i.e. offer unchanged performance, when exposed to a series of white-
box adversarial background patches.” is inconclusive. 

 

Verdict Specific Requirement 10.1: 

Due to the failed Test Criterion 1, the overall Specific Requirement 10.1 failed and therefore it is concluded 
that the AI system under test is not robust against adversarial threats. 

  

Figure 22: Examples for failing of Test Criterion 1. 

Figure 23: Examples for inconclusiveness of Test Criterion 2. 
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Appendix B.1 Requirement Groups 
Requirements from ISO 26262 are grouped and groups assigned the following abbreviations: 

Requirement 
Group 
Abbreviation 

Description 

CI Methods for consistent and correct implementation of external and internal interfaces (CI) 
at the hardware-software level 

DE ASIL recommendations for deriving test cases for embedded software testing (DE) 

DI Methods for deriving test cases for integration testing (DI) 

DU ASIL recommendations for deriving test cases for software unit testing (DU) 

DV ASIL Requirements and recommendations regarding configuration data validation (DV) 

ED Error detection methods (ED) 

EH Error handling methods (EH) 

ET ASIL recommendations for embedded software testing 

FP Methods for correct functional performance, accuracy and timing of safety mechanisms at 
the vehicle level (FP) taken 

IV ASIL recommendations to verify the software integration (IV) 

MC ASIL recommendations for modelling and coding guidelines (MC) 

NU Notations for the software unit design (NU) 

RS Level of robustness at the system (RS) level 

ST ASIL recommendations for software testing (ST) 

UV ASIL recommendations for software unit verification (UV) 
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